Resource requirements for efficient quantum communication using
all-photonic graph states generated from a few matter qubits
- URL: http://arxiv.org/abs/2005.07198v4
- Date: Thu, 11 Feb 2021 20:51:43 GMT
- Title: Resource requirements for efficient quantum communication using
all-photonic graph states generated from a few matter qubits
- Authors: Paul Hilaire, Edwin Barnes, and Sophia E. Economou
- Abstract summary: Long-distance quantum communication requires the use of quantum repeaters.
All-photonic approaches based on graph states generated from linear optics outperform repeater-less protocols.
We show that fast two-qubit entangling gates between matter qubits and high photon collection and detection efficiencies are the main ingredients needed for the all-photonic protocol.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum communication technologies show great promise for applications
ranging from the secure transmission of secret messages to distributed quantum
computing. Due to fiber losses, long-distance quantum communication requires
the use of quantum repeaters, for which there exist quantum memory-based
schemes and all-photonic schemes. While all-photonic approaches based on graph
states generated from linear optics avoid coherence time issues associated with
memories, they outperform repeater-less protocols only at the expense of a
prohibitively large overhead in resources. Here, we consider using matter
qubits to produce the photonic graph states and analyze in detail the trade-off
between resources and performance, as characterized by the achievable secret
key rate per matter qubit. We show that fast two-qubit entangling gates between
matter qubits and high photon collection and detection efficiencies are the
main ingredients needed for the all-photonic protocol to outperform both
repeater-less and memory-based schemes.
Related papers
- A quantum-network register assembled with optical tweezers in an optical cavity [0.0]
Quantum computation and quantum communication are expected to provide users with capabilities inaccessible by classical physics.
One solution is to develop a quantum network consisting of small-scale quantum registers containing computation qubits.
We report on a register that uses both optical tweezers and optical lattices to deterministically assemble a two-dimensional array of atoms in an optical cavity.
arXiv Detail & Related papers (2024-07-12T09:20:57Z) - Deterministic generation of concatenated graph codes from quantum emitters [0.0]
Concatenation of a fault-tolerant construction with a code able to efficiently correct loss is a promising approach to achieve this.
We propose schemes for generatingd graph codes using multi-photon emission from two quantum emitters or a single quantum emitter coupled to a memory.
We show that these schemes enable fault-tolerant fusion-based quantum regimes in practical computation with high photon loss and standard fusion gates.
arXiv Detail & Related papers (2024-06-24T14:44:23Z) - Increasing Quantum Communication Rates Using Hyperentangled Photonic
States [10.785645909949073]
Entanglement is a fundamental resource for quantum communication and information processing.
We propose a technique for achieving higher transmission rates for quantum communication by using hyperentangled states.
arXiv Detail & Related papers (2023-07-12T07:35:49Z) - Architecture and protocols for all-photonic quantum repeaters [0.49157446832511503]
All-photonic quantum repeater scheme promises resilience to photon losses and operational errors.
We propose a new emitter-photonic qubit building block and an RGS protocol that addresses several key considerations.
Our proposed building block significantly reduces the total number of emissive quantum memories required for end nodes.
arXiv Detail & Related papers (2023-06-06T15:08:50Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - Quantum dot technology for quantum repeaters: from entangled photon
generation towards the integration with quantum memories [0.0]
We focus on memory-based quantum-repeater schemes that rely on semiconductor quantum dots for the generation of polarization entangled photons.
We offer a perspective on integration with quantum memories, both highlighting preliminary works on natural-artificial atomic interfaces.
To complete the overview, we also present recent implementations of entanglement-based quantum communication protocols with quantum dots.
arXiv Detail & Related papers (2021-04-14T18:41:01Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Representation matching for delegated quantum computing [64.67104066707309]
representation matching is a generic probabilistic protocol for reducing the cost of quantum computation in a quantum network.
We show that the representation matching protocol is capable of reducing the communication or memory cost to almost minimum in various tasks.
arXiv Detail & Related papers (2020-09-14T18:07:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.