Architecture and protocols for all-photonic quantum repeaters
- URL: http://arxiv.org/abs/2306.03748v2
- Date: Tue, 18 Jun 2024 06:06:48 GMT
- Title: Architecture and protocols for all-photonic quantum repeaters
- Authors: Naphan Benchasattabuse, Michal HajduĊĦek, Rodney Van Meter,
- Abstract summary: All-photonic quantum repeater scheme promises resilience to photon losses and operational errors.
We propose a new emitter-photonic qubit building block and an RGS protocol that addresses several key considerations.
Our proposed building block significantly reduces the total number of emissive quantum memories required for end nodes.
- Score: 0.49157446832511503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The all-photonic quantum repeater scheme, utilizing a type of graph state called the repeater graph state (RGS), promises resilience to photon losses and operational errors, offering a fast Bell pair generation rate limited only by the RGS creation time (rather than enforced round-trip waits). While existing research has predominantly focused on RGS generation and secret key sharing rate analysis, there is a need to extend investigations to encompass broader applications, such as distributed computation and teleportation, the main tasks envisioned for the Quantum Internet. Here we propose a new emitter-photonic qubit building block and an RGS protocol that addresses several key considerations: end node involvement in connection establishment, decoding of logical qubits within the RGS, and computing the Pauli frame corrections at each participating node to ensure the desired correct end-to-end Bell pair state. Our proposed building block significantly reduces the total number of emissive quantum memories required for end nodes and seamlessly integrates all-photonic and memory-based repeaters under the same communication protocol. We also present an algorithm for decoding logical measurement results, employing graphical reasoning based on graph state manipulation rules.
Related papers
- An Improved Design for All-Photonic Quantum Repeaters [0.8409980020848168]
All-photonic quantum repeaters use multi-qubit photonic graph states, called repeater graph states (RGS), instead of matter-based quantum memories.
We propose a new RGS design, which achieves a higher entanglement rate for all-photonic quantum repeaters using fewer qubits.
We also propose a new adaptive scheme to perform logical BSM on the link qubits for loss-only errors.
arXiv Detail & Related papers (2024-05-20T03:57:55Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - All-photonic one-way quantum repeaters [15.3862808585761]
We propose a general framework for all-photonic one-way quantum repeaters based on the measurement-based error correction.
We present a novel decoding scheme, where the error correction process is carried out at the destination based on the accumulated data from the measurements made across the network.
arXiv Detail & Related papers (2022-10-18T18:07:19Z) - Requirements for a processing-node quantum repeater on a real-world
fiber grid [0.4547191277076407]
We numerically study the distribution of entanglement between the Dutch cities of Delft and Eindhoven realized with a processing-node quantum repeater.
We find minimal hardware requirements by solving an optimization problem using genetic algorithms on a high-performance-computing cluster.
arXiv Detail & Related papers (2022-07-21T16:17:38Z) - All-optical graph representation learning using integrated diffractive
photonic computing units [51.15389025760809]
Photonic neural networks perform brain-inspired computations using photons instead of electrons.
We propose an all-optical graph representation learning architecture, termed diffractive graph neural network (DGNN)
We demonstrate the use of DGNN extracted features for node and graph-level classification tasks with benchmark databases and achieve superior performance.
arXiv Detail & Related papers (2022-04-23T02:29:48Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Interleaving: Modular architectures for fault-tolerant photonic quantum
computing [50.591267188664666]
Photonic fusion-based quantum computing (FBQC) uses low-loss photonic delays.
We present a modular architecture for FBQC in which these components are combined to form "interleaving modules"
Exploiting the multiplicative power of delays, each module can add thousands of physical qubits to the computational Hilbert space.
arXiv Detail & Related papers (2021-03-15T18:00:06Z) - Protocols for creating and distilling multipartite GHZ states with Bell
pairs [0.0]
distribution of high-quality Greenberger-Horne-Zeilinger (GHZ) states is at the heart of many quantum communication tasks.
We introduce a dynamic programming algorithm to optimize over a large class of protocols that create and purify GHZ states.
arXiv Detail & Related papers (2020-10-23T09:40:01Z) - Representation matching for delegated quantum computing [64.67104066707309]
representation matching is a generic probabilistic protocol for reducing the cost of quantum computation in a quantum network.
We show that the representation matching protocol is capable of reducing the communication or memory cost to almost minimum in various tasks.
arXiv Detail & Related papers (2020-09-14T18:07:43Z) - Resource requirements for efficient quantum communication using
all-photonic graph states generated from a few matter qubits [0.0]
Long-distance quantum communication requires the use of quantum repeaters.
All-photonic approaches based on graph states generated from linear optics outperform repeater-less protocols.
We show that fast two-qubit entangling gates between matter qubits and high photon collection and detection efficiencies are the main ingredients needed for the all-photonic protocol.
arXiv Detail & Related papers (2020-05-14T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.