Tiering as a Stochastic Submodular Optimization Problem
- URL: http://arxiv.org/abs/2005.07893v1
- Date: Sat, 16 May 2020 07:39:29 GMT
- Title: Tiering as a Stochastic Submodular Optimization Problem
- Authors: Hyokun Yun, Michael Froh, Roshan Makhijani, Brian Luc, Alex Smola,
Trishul Chilimbi
- Abstract summary: Tiering is an essential technique for building large-scale information retrieval systems.
We show that the optimal tiering as an optimization problem can be cast as a submodular minimization problem with a submodular knapsack constraint.
- Score: 5.659969270836789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tiering is an essential technique for building large-scale information
retrieval systems. While the selection of documents for high priority tiers
critically impacts the efficiency of tiering, past work focuses on optimizing
it with respect to a static set of queries in the history, and generalizes
poorly to the future traffic. Instead, we formulate the optimal tiering as a
stochastic optimization problem, and follow the methodology of regularized
empirical risk minimization to maximize the \emph{generalization performance}
of the system. We also show that the optimization problem can be cast as a
stochastic submodular optimization problem with a submodular knapsack
constraint, and we develop efficient optimization algorithms by leveraging this
connection.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - Primitive Agentic First-Order Optimization [0.0]
This work presents a proof-of-concept study combining primitive state representations and agent-environment interactions as first-order reinforcement learning.
The results show that elementary RL methods combined with succinct partial state representations can be used as optimizeds manage complexity in RL-based optimization.
arXiv Detail & Related papers (2024-06-07T11:13:38Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
A central challenge in this setting is backpropagation through the solution of an optimization problem, which often lacks a closed form.
This paper provides theoretical insights into the backward pass of unrolled optimization, showing that it is equivalent to the solution of a linear system by a particular iterative method.
A system called Folded Optimization is proposed to construct more efficient backpropagation rules from unrolled solver implementations.
arXiv Detail & Related papers (2023-12-28T23:15:18Z) - Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization [16.57676001669012]
In data-driven optimization, the sample performance of the obtained decision typically incurs an optimistic bias against the true performance.
Common techniques to correct this bias, such as cross-validation, require repeatedly solving additional optimization problems and are therefore expensive.
We develop a general bias correction approach that directly approximates the first-order bias and does not require solving any additional optimization problems.
arXiv Detail & Related papers (2023-06-16T07:07:58Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
Metaheuristics are universal optimization algorithms which should be used for solving difficult problems, unsolvable by classic approaches.
In this paper we aim at constructing novel socio-cognitive metaheuristic based on castes, and apply several versions of this algorithm to optimization of time-delay system model.
arXiv Detail & Related papers (2022-10-23T22:21:10Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
We propose to replace the iterative solvers altogether with a trainable parametric set function.
We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems.
arXiv Detail & Related papers (2022-02-08T19:13:13Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.