Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization
- URL: http://arxiv.org/abs/2306.10081v3
- Date: Wed, 24 Jul 2024 02:08:25 GMT
- Title: Optimizer's Information Criterion: Dissecting and Correcting Bias in Data-Driven Optimization
- Authors: Garud Iyengar, Henry Lam, Tianyu Wang,
- Abstract summary: In data-driven optimization, the sample performance of the obtained decision typically incurs an optimistic bias against the true performance.
Common techniques to correct this bias, such as cross-validation, require repeatedly solving additional optimization problems and are therefore expensive.
We develop a general bias correction approach that directly approximates the first-order bias and does not require solving any additional optimization problems.
- Score: 16.57676001669012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In data-driven optimization, the sample performance of the obtained decision typically incurs an optimistic bias against the true performance, a phenomenon commonly known as the Optimizer's Curse and intimately related to overfitting in machine learning. Common techniques to correct this bias, such as cross-validation, require repeatedly solving additional optimization problems and are therefore computationally expensive. We develop a general bias correction approach, building on what we call Optimizer's Information Criterion (OIC), that directly approximates the first-order bias and does not require solving any additional optimization problems. Our OIC generalizes the celebrated Akaike Information Criterion to evaluate the objective performance in data-driven optimization, which crucially involves not only model fitting but also its interplay with the downstream optimization. As such it can be used for decision selection instead of only model selection. We apply our approach to a range of data-driven optimization formulations comprising empirical and parametric models, their regularized counterparts, and furthermore contextual optimization. Finally, we provide numerical validation on the superior performance of our approach under synthetic and real-world datasets.
Related papers
- End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Generative Adversarial Model-Based Optimization via Source Critic Regularization [25.19579059511105]
We propose generative adversarial model-based optimization using adaptive source critic regularization (aSCR)
ASCR constrains the optimization trajectory to regions of the design space where the surrogate function is reliable.
We show how leveraging aSCR with standard Bayesian optimization outperforms existing methods on a suite of offline generative design tasks.
arXiv Detail & Related papers (2024-02-09T16:43:57Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Estimate-Then-Optimize versus Integrated-Estimation-Optimization versus
Sample Average Approximation: A Stochastic Dominance Perspective [15.832111591654293]
We show that a reverse behavior appears when the model class is well-specified and there is sufficient data.
We also demonstrate how standard sample average approximation (SAA) performs the worst when the model class is well-specified in terms of regret.
arXiv Detail & Related papers (2023-04-13T21:54:53Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
offline data-driven decision-making involves synthesizing optimized decisions with no active interaction.
A key challenge is distributional shift: when we optimize with respect to the input into a model trained from offline data, it is easy to produce an out-of-distribution (OOD) input that appears erroneously good.
In this paper, we formulate offline data-driven decision-making as domain adaptation, where the goal is to make accurate predictions for the value of optimized decisions.
arXiv Detail & Related papers (2022-11-21T11:01:37Z) - Implicit Rate-Constrained Optimization of Non-decomposable Objectives [37.43791617018009]
We consider a family of constrained optimization problems arising in machine learning.
Our key idea is to formulate a rate-constrained optimization that expresses the threshold parameter as a function of the model parameters.
We show how the resulting optimization problem can be solved using standard gradient based methods.
arXiv Detail & Related papers (2021-07-23T00:04:39Z) - Tiering as a Stochastic Submodular Optimization Problem [5.659969270836789]
Tiering is an essential technique for building large-scale information retrieval systems.
We show that the optimal tiering as an optimization problem can be cast as a submodular minimization problem with a submodular knapsack constraint.
arXiv Detail & Related papers (2020-05-16T07:39:29Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.