論文の概要: C-MI-GAN : Estimation of Conditional Mutual Information using MinMax
formulation
- arxiv url: http://arxiv.org/abs/2005.08226v2
- Date: Thu, 23 Jul 2020 06:02:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 05:26:24.427914
- Title: C-MI-GAN : Estimation of Conditional Mutual Information using MinMax
formulation
- Title(参考訳): C-MI-GAN : MinMax定式化による条件付き相互情報の推定
- Authors: Arnab Kumar Mondal, Arnab Bhattacharya, Sudipto Mukherjee, Prathosh
AP, Sreeram Kannan, Himanshu Asnani
- Abstract要約: 我々は,条件付き相互情報(CMI)推定を,その定式化をミニマックス最適化問題として利用して検討する。
提案した推定器は,様々なシミュレーションデータセットに対する既存手法よりも優れた推定値を提供する。
CMI推定の応用として、実データ上での条件付き独立テスト(CI)のための推定器をデプロイし、最先端のCIテスタよりも優れた結果を得る。
- 参考スコア(独自算出の注目度): 20.57104064155529
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of information theoretic quantities such as mutual information and
its conditional variant has drawn interest in recent times owing to their
multifaceted applications. Newly proposed neural estimators for these
quantities have overcome severe drawbacks of classical $k$NN-based estimators
in high dimensions. In this work, we focus on conditional mutual information
(CMI) estimation by utilizing its formulation as a minmax optimization problem.
Such a formulation leads to a joint training procedure similar to that of
generative adversarial networks. We find that our proposed estimator provides
better estimates than the existing approaches on a variety of simulated data
sets comprising linear and non-linear relations between variables. As an
application of CMI estimation, we deploy our estimator for conditional
independence (CI) testing on real data and obtain better results than
state-of-the-art CI testers.
- Abstract(参考訳): 相互情報などの情報理論量の推定とその条件付き変種は、その多面的応用により近年関心を集めている。
これらの量に対する新しいニューラル推定器は、高次元の古典的な$k$NNベースの推定器の深刻な欠点を克服した。
本研究では,その定式化をミニマックス最適化問題として利用して,条件付き相互情報(CMI)の推定に着目する。
このような定式化は、生成的敵ネットワークと同様の合同訓練手順につながる。
提案した推定器は,変数間の線形および非線形関係からなる様々なシミュレーションデータセットに対する既存手法よりも優れた推定値を提供する。
CMI推定の応用として、実データ上での条件付き独立テスト(CI)のための推定器をデプロイし、最先端のCIテスタよりも優れた結果を得る。
関連論文リスト
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
自己組織化マップ(SOM)におけるトポロジカルプロジェクションに基づく半教師付き学習手法を提案する。
提案手法は,まずラベル付きデータ上でSOMを訓練し,最小限のラベル付きデータポイントをキーベストマッチングユニット(BMU)に割り当てる。
提案した最小教師付きモデルが従来の回帰手法を大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-01-12T22:51:48Z) - Max-Sliced Mutual Information [17.667315953598788]
高次元の確率変数間の依存性の定量化は、統計的学習と推論の中心である。
2つの古典的手法は正準相関解析 (CCA) であり、これは元の変数の最大相関型を識別するものであり、シャノンの相互情報は普遍的依存度である。
本研究は、最大スライシング相互情報(mSMI)と呼ばれるCCAのスケーラブルな情報理論の一般化という形で中間層を提案する。
論文 参考訳(メタデータ) (2023-09-28T06:49:25Z) - Using representation balancing to learn conditional-average dose responses from clustered data [5.633848204699653]
関連する用量による介入に対する単位の反応を推定することは、様々な領域において関係している。
本稿では,クラスタ化データによるモデル性能への影響を示すとともに,推定器であるCBRNetを提案する。
論文 参考訳(メタデータ) (2023-09-07T14:17:44Z) - Beyond Normal: On the Evaluation of Mutual Information Estimators [52.85079110699378]
そこで本研究では,既知の地道的相互情報を用いて,多種多様な分布群を構築する方法について述べる。
本稿では,問題の難易度に適応した適切な推定器の選択方法について,実践者のためのガイドラインを提供する。
論文 参考訳(メタデータ) (2023-06-19T17:26:34Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
対称正定値多様体の対数ユークリッド幾何学を利用する共分散行列の多値推定器を導入する。
固定予算が与えられた推定器の平均二乗誤差を最小化する最適サンプル割り当て方式を開発した。
物理アプリケーションからのデータによるアプローチの評価は、ベンチマークと比較すると、より正確なメトリック学習と1桁以上のスピードアップを示している。
論文 参考訳(メタデータ) (2023-01-31T16:33:46Z) - Diffeomorphic Information Neural Estimation [2.566492438263125]
Mutual Information (MI) と Conditional Mutual Information (CMI) は情報理論の多目的ツールである。
DINE (Diffomorphic Information Neural Estorimator) は連続確率変数のCMIを推定するための新しい手法である。
興味のある変数は、より単純な分布に従う適切なサロゲートに置き換えることができることを示す。
論文 参考訳(メタデータ) (2022-11-20T03:03:56Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Neural Estimators for Conditional Mutual Information Using Nearest
Neighbors Sampling [36.35382677479192]
サンプルの集合から相互情報(MI)または条件相互情報(CMI)を推定することは、長年の課題である。
最近の研究は、ニューラルネットワークの近似能力を活用し、従来の手法よりも改善されている。
サンプル平均値に高信頼濃度境界を導出し, 再サンプリングを行うため, k 隣人 (k-NN) に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-06-12T14:30:45Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。