論文の概要: Efficient Wait-k Models for Simultaneous Machine Translation
- arxiv url: http://arxiv.org/abs/2005.08595v2
- Date: Tue, 4 Aug 2020 01:10:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 00:16:04.837876
- Title: Efficient Wait-k Models for Simultaneous Machine Translation
- Title(参考訳): 同時機械翻訳のための効率的なwait-kモデル
- Authors: Maha Elbayad, Laurent Besacier, Jakob Verbeek
- Abstract要約: 同時機械翻訳は、入力シーケンス全体が利用可能になる前に出力生成を開始することで構成される。
Wait-kデコーダは、この問題に対してシンプルだが効率的なアプローチを提供する。
IWSLTデータセットを用いた音声コーパスの低リソース設定におけるwait-k復号の動作について検討する。
- 参考スコア(独自算出の注目度): 46.01342928010307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simultaneous machine translation consists in starting output generation
before the entire input sequence is available. Wait-k decoders offer a simple
but efficient approach for this problem. They first read k source tokens, after
which they alternate between producing a target token and reading another
source token. We investigate the behavior of wait-k decoding in low resource
settings for spoken corpora using IWSLT datasets. We improve training of these
models using unidirectional encoders, and training across multiple values of k.
Experiments with Transformer and 2D-convolutional architectures show that our
wait-k models generalize well across a wide range of latency levels. We also
show that the 2D-convolution architecture is competitive with Transformers for
simultaneous translation of spoken language.
- Abstract(参考訳): 同時機械翻訳は、入力シーケンス全体が利用可能になる前に出力生成を開始することで構成される。
Wait-kデコーダは、この問題に対してシンプルだが効率的なアプローチを提供する。
最初はkソーストークンを読み、その後ターゲットトークンの生成と別のソーストークンの読み込みを交互に行う。
音声コーパスの低リソース環境におけるwait-k復号の挙動をiwsltデータセットを用いて検討する。
我々は、一方向エンコーダを用いてモデルのトレーニングを改善し、kの複数の値にまたがってトレーニングを行う。
Transformerと2D畳み込みアーキテクチャによる実験により、我々のwait-kモデルは幅広いレイテンシレベルにわたってよく一般化されている。
また, 2次元畳み込みアーキテクチャは, 同時翻訳のためのトランスフォーマーと競合することを示した。
関連論文リスト
- AMUSD: Asynchronous Multi-Device Speculative Decoding for LLM Acceleration [0.3626013617212667]
本稿では,AMUSD (Asynchronous Multi-device Speculative Decoding) を導入し,ドラフトを分離し,フェーズを検証することによって生成を高速化するシステムを提案する。
AMUSDは、1つのモデル(ドラフトまたは検証)のみが一度にトークン生成を行う従来の投機復号法とは異なり、どちらのモデルも別々のデバイス上で独立して予測を行うことができる。
我々は、複数のデータセットに対するアプローチを評価し、AMUSDが投機的復号化よりも平均29%改善し、従来の自己回帰復号化よりも1.96$times$スピードアップを達成したことを示す。
論文 参考訳(メタデータ) (2024-10-22T19:15:35Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
本稿では,複数連続するトークンを1つのフォワードパスで同時に復号する,新しい並列復号法,すなわちthithidden Transferを提案する。
加速度測定では,Medusa や Self-Speculative decoding など,単モデル加速技術よりも優れています。
論文 参考訳(メタデータ) (2024-04-18T09:17:06Z) - All in One: Exploring Unified Video-Language Pre-training [44.22059872694995]
そこで本研究では,生のビデオとテキストの信号を共同表現に組み込んだ,エンドツーエンドのビデオ言語モデルであるtextitall-in-one Transformerを提案する。
コードと事前訓練されたモデルはhttps://github.com/showlab/all-in-one.comでリリースされた。
論文 参考訳(メタデータ) (2022-03-14T17:06:30Z) - Sentence Bottleneck Autoencoders from Transformer Language Models [53.350633961266375]
我々は、事前訓練されたフリーズトランスフォーマー言語モデルから文レベルのオートエンコーダを構築する。
我々は、文ボトルネックと1層修飾トランスフォーマーデコーダのみを訓練しながら、マスク付き言語モデリングの目的を生成的・認知的言語として適応する。
本研究では,テキスト類似性タスク,スタイル転送,単一文分類タスクにおける事前学習されたトランスフォーマーからの表現をGLUEベンチマークで抽出する手法よりも,大規模な事前学習モデルよりも少ないパラメータを用いて,より高品質な文表現を実現することを示す。
論文 参考訳(メタデータ) (2021-08-31T19:39:55Z) - Dual-decoder Transformer for Joint Automatic Speech Recognition and
Multilingual Speech Translation [71.54816893482457]
自動音声認識(ASR)と多言語音声翻訳(ST)を共同で行う新しいモデルアーキテクチャであるデュアルデコーダトランスフォーマを導入する。
我々のモデルはオリジナルのTransformerアーキテクチャに基づいているが、2つのデコーダで構成されており、それぞれが1つのタスク(ASRまたはST)を担っている。
論文 参考訳(メタデータ) (2020-11-02T04:59:50Z) - Neural Simultaneous Speech Translation Using Alignment-Based Chunking [4.224809458327515]
同時機械翻訳では、ソース単語の連続ストリームが与えられた部分翻訳をいつ生成するかを決定することが目的である。
入力や出力語の生成を継続する際の動的決定を動的に行うニューラルネットワーク翻訳(NMT)モデルを提案する。
We results on the IWSLT 2020 English-to-German task outperform a wait-k baseline by 2.6 to 3.7% BLEU absolute。
論文 参考訳(メタデータ) (2020-05-29T10:20:48Z) - Non-Autoregressive Machine Translation with Disentangled Context
Transformer [70.95181466892795]
最先端のニューラルネットワーク翻訳モデルは、左から右への翻訳を生成し、各ステップは以前に生成されたトークンに条件付けされる。
本研究では,異なるコンテキストのトークンを同時に生成するDisentangled Context (DisCo) 変換器を提案する。
本モデルでは,非自己回帰型機械翻訳技術と比較して性能が向上する一方,デコーディング時間の平均は大幅に減少する。
論文 参考訳(メタデータ) (2020-01-15T05:32:18Z) - Bi-Decoder Augmented Network for Neural Machine Translation [108.3931242633331]
本稿では,ニューラルマシン翻訳タスクのためのBi-Decoder Augmented Network (BiDAN)を提案する。
各デコーダは入力されたテキストの表現を対応する言語に変換するため、2つの目的語と共同でトレーニングすることで、共有エンコーダは言語に依存しない意味空間を生成することができる。
論文 参考訳(メタデータ) (2020-01-14T02:05:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。