論文の概要: Neural Simultaneous Speech Translation Using Alignment-Based Chunking
- arxiv url: http://arxiv.org/abs/2005.14489v1
- Date: Fri, 29 May 2020 10:20:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 23:21:22.250355
- Title: Neural Simultaneous Speech Translation Using Alignment-Based Chunking
- Title(参考訳): アライメントベースチャンキングを用いたニューラル同時音声翻訳
- Authors: Patrick Wilken, Tamer Alkhouli, Evgeny Matusov, Pavel Golik
- Abstract要約: 同時機械翻訳では、ソース単語の連続ストリームが与えられた部分翻訳をいつ生成するかを決定することが目的である。
入力や出力語の生成を継続する際の動的決定を動的に行うニューラルネットワーク翻訳(NMT)モデルを提案する。
We results on the IWSLT 2020 English-to-German task outperform a wait-k baseline by 2.6 to 3.7% BLEU absolute。
- 参考スコア(独自算出の注目度): 4.224809458327515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In simultaneous machine translation, the objective is to determine when to
produce a partial translation given a continuous stream of source words, with a
trade-off between latency and quality. We propose a neural machine translation
(NMT) model that makes dynamic decisions when to continue feeding on input or
generate output words. The model is composed of two main components: one to
dynamically decide on ending a source chunk, and another that translates the
consumed chunk. We train the components jointly and in a manner consistent with
the inference conditions. To generate chunked training data, we propose a
method that utilizes word alignment while also preserving enough context. We
compare models with bidirectional and unidirectional encoders of different
depths, both on real speech and text input. Our results on the IWSLT 2020
English-to-German task outperform a wait-k baseline by 2.6 to 3.7% BLEU
absolute.
- Abstract(参考訳): 同時機械翻訳では、レイテンシと品質のトレードオフを伴う、ソースワードの連続的なストリームが与えられた部分翻訳をいつ生成するかを決定することが目的である。
入力や出力語の生成を継続する際の動的決定を動的に行うニューラルネットワーク翻訳(NMT)モデルを提案する。
モデルは、ソースチャンクの終了を動的に決定するコンポーネントと、消費チャンクを変換するコンポーネントの2つで構成されている。
私たちは、推論条件と一致した方法でコンポーネントを共同でトレーニングします。
チャンクトレーニングデータを生成するために,十分なコンテキストを維持しながら単語アライメントを利用する手法を提案する。
実音声とテキスト入力の両方において,深度の異なる双方向および一方向エンコーダとモデルを比較する。
iwslt 2020の英語とドイツ語のタスクの結果は、wait-kのベースラインを2.6から3.7%上回っています。
関連論文リスト
- A Case Study on Context-Aware Neural Machine Translation with Multi-Task Learning [49.62044186504516]
文書レベルのニューラルネットワーク翻訳(DocNMT)では、コンテクストやソース文のエンコーディングにおいてマルチエンコーダアプローチが一般的である。
近年の研究では、コンテキストエンコーダがノイズを発生させ、コンテキストの選択に頑健なモデルを実現することが示されている。
本稿では、マルチタスク学習(MTL)を通してコンテキストエンコーディングを明示的にモデル化することで、コンテキスト選択に敏感なモデルを実現することにより、この観察をさらに検討する。
論文 参考訳(メタデータ) (2024-07-03T12:50:49Z) - Language Model is a Branch Predictor for Simultaneous Machine
Translation [73.82754138171587]
翻訳遅延を低減するため,SiMTタスクに分岐予測手法を組み込むことを提案する。
言語モデルを分岐予測器として利用し,潜在的な分岐方向を予測する。
実際のソース語が予測されたソース語から逸脱すると、実際のソース語を使用して出力を復号し、予測された出力を置き換える。
論文 参考訳(メタデータ) (2023-12-22T07:32:47Z) - Shiftable Context: Addressing Training-Inference Context Mismatch in
Simultaneous Speech Translation [0.17188280334580192]
セグメントベース処理を用いたトランスフォーマーモデルは、同時音声翻訳に有効なアーキテクチャである。
トレーニングと推論を通じて一貫したセグメントとコンテキストサイズを確実に維持するために、シフト可能なコンテキストを提案する。
論文 参考訳(メタデータ) (2023-07-03T22:11:51Z) - Bridging the Data Gap between Training and Inference for Unsupervised
Neural Machine Translation [49.916963624249355]
UNMTモデルは、翻訳されたソースと推論中の自然言語で擬似並列データに基づいて訓練される。
トレーニングと推論のソース差はUNMTモデルの翻訳性能を妨げている。
本稿では、擬似並列データ自然言語を同時に用いたオンライン自己学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-16T04:50:27Z) - DEEP: DEnoising Entity Pre-training for Neural Machine Translation [123.6686940355937]
機械翻訳モデルは通常、トレーニングコーパスで稀な名前付きエンティティの翻訳を貧弱に生成することが示されている。
文中の名前付きエンティティ翻訳精度を向上させるために,大量のモノリンガルデータと知識ベースを利用するDenoising Entity Pre-training法であるDEEPを提案する。
論文 参考訳(メタデータ) (2021-11-14T17:28:09Z) - Source and Target Bidirectional Knowledge Distillation for End-to-end
Speech Translation [88.78138830698173]
外部テキストベースNMTモデルからのシーケンスレベルの知識蒸留(SeqKD)に注目した。
E2E-STモデルを訓練し、パラフレーズ転写を1つのデコーダで補助タスクとして予測する。
論文 参考訳(メタデータ) (2021-04-13T19:00:51Z) - Efficient Wait-k Models for Simultaneous Machine Translation [46.01342928010307]
同時機械翻訳は、入力シーケンス全体が利用可能になる前に出力生成を開始することで構成される。
Wait-kデコーダは、この問題に対してシンプルだが効率的なアプローチを提供する。
IWSLTデータセットを用いた音声コーパスの低リソース設定におけるwait-k復号の動作について検討する。
論文 参考訳(メタデータ) (2020-05-18T11:14:23Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
文書レベルの機械翻訳は、文間の依存関係をソース文の翻訳に組み込む。
本稿では,ニューラルマシン翻訳(NMT)を訓練し,文のターゲット翻訳と周辺文の双方を予測することによって,文間の依存関係をモデル化するフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T03:38:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。