Dynamical quantum phase transition from a critical quantum quench
- URL: http://arxiv.org/abs/2005.08660v2
- Date: Wed, 26 Aug 2020 12:48:23 GMT
- Title: Dynamical quantum phase transition from a critical quantum quench
- Authors: Chengxiang Ding
- Abstract summary: We study the dynamical quantum phase transition of the critical quantum quench.
We find half-quantized or unquantized dynamical topological order parameter and dynamical Chern number.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dynamical quantum phase transition of the critical quantum
quench, in which the prequenched Hamiltonian, or the postquenched Hamiltonian,
or both of them are set to be the critical points of equilibrium quantum phase
transitions, we find half-quantized or unquantized dynamical topological order
parameter and dynamical Chern number; these results and also the existence of
dynamical quantum phase transition are all closely related to the singularity
of the Bogoliubov angle at the gap-closing momentum. The effects of the
singularity may also be canceled out if both the prequenched and postquenched
Hamiltonians are critical, then the dynamical topological order parameter and
dynamical Chern number restore to integer ones. Our findings show that the
widely accepted definitions of dynamical topological order parameter and
dynamical Chern number are problematic for the critical quenches in the
perspective of topology, which call for new definitions of them.
Related papers
- Quantum coarsening and collective dynamics on a programmable quantum simulator [27.84599956781646]
We experimentally study collective dynamics across a (2+1)D Ising quantum phase transition.
By deterministically preparing and following the evolution of ordered domains, we show that the coarsening is driven by the curvature of domain boundaries.
We quantitatively explore these phenomena and further observe long-lived oscillations of the order parameter, corresponding to an amplitude (Higgs) mode.
arXiv Detail & Related papers (2024-07-03T16:29:12Z) - Emerging topological characterization in non-equilibrium states of quenched Kitaev chains [0.0]
Topological characteristics of quantum systems are determined by the closing of a gap.
The dynamical quantum phase transition (DQPT) during quantum real-time evolution has emerged as a nonequilibrium analog to the quantum phase transition (QPT)
arXiv Detail & Related papers (2023-11-14T10:26:15Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Dynamical Topological Quantum Phase Transitions at Criticality [0.0]
We contribute to expanding the systematic understanding of the interrelation between the equilibrium quantum phase transition and the dynamical quantum phase transition (DQPT)
Specifically, we find that dynamical quantum phase transition relies on the existence of massless it propagating quasiparticles as signaled by their impact on the Loschmidt overlap.
The underlying two dimensional model reveals gapless modes, which do not couple to the dynamical quantum phase transitions, while relevant massless quasiparticles present periodic nonanalytic signatures on the Loschmidt amplitude.
arXiv Detail & Related papers (2021-04-09T13:38:39Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Signatures of topology in quantum quench dynamics and their
interrelation [0.0]
We study the conditions for the appearance of entanglement spectrum crossings, dynamical quantum phase transitions, and dynamical Chern numbers.
For non-interacting models, we show that in general there is no direct relation between these three quantities.
arXiv Detail & Related papers (2020-03-17T18:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.