論文の概要: A Riemannian Primal-dual Algorithm Based on Proximal Operator and its
Application in Metric Learning
- arxiv url: http://arxiv.org/abs/2005.09194v1
- Date: Tue, 19 May 2020 03:31:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 13:11:47.707208
- Title: A Riemannian Primal-dual Algorithm Based on Proximal Operator and its
Application in Metric Learning
- Title(参考訳): 近位演算子に基づくリーマン原始双対アルゴリズムとその計量学習への応用
- Authors: Shijun Wang, Baocheng Zhu, Lintao Ma, Yuan Qi
- Abstract要約: 一次変数と双対変数を反復的に最適化する原始双対アルゴリズムを提案する。
提案アルゴリズムの収束を証明し,その非漸近収束率を示す。
ファンドマネージメントにおける最適ファンド選択問題に関する予備実験の結果,有効性が確認された。
- 参考スコア(独自算出の注目度): 3.511851311025242
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we consider optimizing a smooth, convex, lower semicontinuous
function in Riemannian space with constraints. To solve the problem, we first
convert it to a dual problem and then propose a general primal-dual algorithm
to optimize the primal and dual variables iteratively. In each optimization
iteration, we employ a proximal operator to search optimal solution in the
primal space. We prove convergence of the proposed algorithm and show its
non-asymptotic convergence rate. By utilizing the proposed primal-dual
optimization technique, we propose a novel metric learning algorithm which
learns an optimal feature transformation matrix in the Riemannian space of
positive definite matrices. Preliminary experimental results on an optimal fund
selection problem in fund of funds (FOF) management for quantitative investment
showed its efficacy.
- Abstract(参考訳): 本稿では,制約付きリーマン空間における滑らかで凸な半連続関数の最適化を検討する。
この問題を解くために,まず双対問題に変換し,その後,一次変数と双対変数を反復的に最適化する一般原始双対アルゴリズムを提案する。
各最適化イテレーションにおいて、原始空間における最適解を探索するために近似演算子を用いる。
提案アルゴリズムの収束を証明し,その非漸近収束率を示す。
提案手法を用いて,正定値行列のリーマン空間における最適特徴変換行列を学習する新しい距離学習アルゴリズムを提案する。
定量投資のためのファンド・オブ・ファンド(FOF)管理における最適ファンド選択問題に関する予備実験の結果,有効性を示した。
関連論文リスト
- Dynamic Incremental Optimization for Best Subset Selection [15.8362578568708]
最良のサブセット選択は、多くの学習問題に対する金の標準と見なされている。
主問題構造と双対問題構造に基づいて,効率的な部分集合双対アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-02-04T02:26:40Z) - Faster Riemannian Newton-type Optimization by Subsampling and Cubic
Regularization [3.867143522757309]
この研究は、制約集合が多様体構造を意味するような制約付き大規模非制約最適化に関するものである。
本稿では,収束性の向上と計算コストの削減を目的とした2階サドル最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:37:44Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Primal-Dual Sequential Subspace Optimization for Saddle-point Problems [3.9582154141918964]
大規模サドル点問題に対する逐次部分空間最適化手法を提案する。
低次元部分空間における補助的サドル点問題(英語版)を、原始整数双対変数上の一階情報から導かれる方向によって解決する。
実験結果は、一般的な一階法と比較して、かなり良い収束性を示した。
論文 参考訳(メタデータ) (2020-08-20T18:19:19Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
スケッチに基づくL2正規化最小二乗問題の解法を提案する。
我々は、最も人気のあるランダム埋め込みの2つ、すなわちガウス埋め込みとサブサンプリングランダム化アダマール変換(SRHT)を考える。
論文 参考訳(メタデータ) (2020-06-10T15:00:09Z) - Riemannian Proximal Policy Optimization [15.532281292327031]
我々は、マルコフ決定過程(MDP)問題を解決するために、収束が保証された一般近似最適化アルゴリズムを用いる。
MDP問題における政策モデルを定式化するために、不定混合モデル(GM)として定式化する。
論文 参考訳(メタデータ) (2020-05-19T03:37:59Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。