論文の概要: On the Choice of Auxiliary Languages for Improved Sequence Tagging
- arxiv url: http://arxiv.org/abs/2005.09389v1
- Date: Tue, 19 May 2020 12:32:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 13:13:13.764346
- Title: On the Choice of Auxiliary Languages for Improved Sequence Tagging
- Title(参考訳): 系列タグ改善のための補助言語の選択について
- Authors: Lukas Lange, Heike Adel, Jannik Str\"otgen
- Abstract要約: 言語距離に基づいて最適な補助言語を予測できるかどうかを検討する。
注意に基づくメタ埋め込みは,異なる言語からの事前学習した埋め込みを効果的に組み合わせてシーケンスタグ付けできることを示す。
- 参考スコア(独自算出の注目度): 11.98821166621488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work showed that embeddings from related languages can improve the
performance of sequence tagging, even for monolingual models. In this analysis
paper, we investigate whether the best auxiliary language can be predicted
based on language distances and show that the most related language is not
always the best auxiliary language. Further, we show that attention-based
meta-embeddings can effectively combine pre-trained embeddings from different
languages for sequence tagging and set new state-of-the-art results for
part-of-speech tagging in five languages.
- Abstract(参考訳): 最近の研究により、関連する言語からの埋め込みは、単言語モデルでもシーケンスタグ付けのパフォーマンスを向上させることが示されている。
本稿では,最良補助言語が言語距離に基づいて予測可能かどうかについて検討し,最上位言語が必ずしも最良補助言語ではないことを示す。
さらに,注意に基づくメタ埋め込みは,異なる言語からの事前学習された埋め込みを効果的に組み合わせ,シーケンスタグ付けを行い,5つの言語でパート・オブ・スパイチタグ付けを行うための新たな最新結果を設定できることを示した。
関連論文リスト
- Accelerating Multilingual Language Model for Excessively Tokenized Languages [3.5570874721859016]
大型言語モデル(LLM)のトークン化子は、文字やUnicodeレベルのトークンを非ローマ語アルファベットの言語で断片化することが多い。
このような言語でテキスト生成を高速化する,シンプルで効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-19T12:26:57Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Phylogeny-Inspired Adaptation of Multilingual Models to New Languages [43.62238334380897]
我々は、言語系統情報を用いて、密接に関連する言語を活用する言語間移動を改善する方法を示す。
我々は,多言語(ゲルマン語,ウルリック語,トゥピ語,ウト・アステカン語)の言語をアダプタベースで学習し,構文的・意味的タスクの評価を行う。
論文 参考訳(メタデータ) (2022-05-19T15:49:19Z) - Lifting the Curse of Multilinguality by Pre-training Modular
Transformers [72.46919537293068]
多言語事前訓練されたモデルは、多言語間のパフォーマンスが低下する、多言語間の呪いに苦しむ。
言語固有のモジュールを導入し、言語定数当たりのトレーニング可能なパラメータの総数を保ちながら、モデルの総容量を拡大できるようにします。
我々のアプローチは、測定可能な性能低下のないポストホック言語の追加を可能にし、モデルの使用を事前訓練された言語セットに制限しない。
論文 参考訳(メタデータ) (2022-05-12T17:59:56Z) - Role of Language Relatedness in Multilingual Fine-tuning of Language
Models: A Case Study in Indo-Aryan Languages [34.79533646549939]
我々は,多言語微調整を用いたNLPモデルにおいて,同族に属する言語の関連性を活用した影響について検討する。
Oriya や Punjabi のような低資源言語は多言語微調整の最大の受益者である。
論文 参考訳(メタデータ) (2021-09-22T06:37:39Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation [93.80733419450225]
本稿では,言語間移動学習の現状を解析する。
XTREMEを10種類の自然言語理解タスクからなるXTREME-Rに拡張する。
論文 参考訳(メタデータ) (2021-04-15T12:26:12Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
我々は、バイト埋め込みと畳み込み層に基づく繰り返しニューラルネットワーク予測器を構築する。
様々な言語型の特徴を確実に予測できることを示す。
論文 参考訳(メタデータ) (2020-04-30T21:00:53Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。