Detecting Fractional Chern Insulators in Optical Lattices through
Quantized Displacement
- URL: http://arxiv.org/abs/2005.09860v2
- Date: Wed, 2 Dec 2020 18:20:21 GMT
- Title: Detecting Fractional Chern Insulators in Optical Lattices through
Quantized Displacement
- Authors: Johannes Motruk and Ilyoun Na
- Abstract summary: topological states of matter such as fractional Chern insulators (FCIs) in cold atom systems have recently come within experimental reach.
We show that for a $nu= 1/2$ FCI state realized in the lowest band of a Harper-Hofstadter model of interacting bosons confined by a harmonic trapping potential, the fractionally quantized Hall conductivity $sigma_xy$ can be accurately determined.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The realization of interacting topological states of matter such as
fractional Chern insulators (FCIs) in cold atom systems has recently come
within experimental reach due to the engineering of optical lattices with
synthetic gauge fields providing the required topological band structures.
However, detecting their occurrence might prove difficult since transport
measurements akin to those in solid state systems are challenging to perform in
cold atom setups and alternatives have to be found. We show that for a $\nu=
1/2$ FCI state realized in the lowest band of a Harper-Hofstadter model of
interacting bosons confined by a harmonic trapping potential, the fractionally
quantized Hall conductivity $\sigma_{xy}$ can be accurately determined by the
displacement of the atomic cloud under the action of a constant force which
provides a suitable experimentally measurable signal for detecting the
topological nature of the state. Using matrix-product state algorithms, we show
that, in both cylinder and square geometries, the movement of the particle
cloud in time under the application of a constant force field on top of the
confining potential is proportional to $\sigma_{xy}$ for an extended range of
field strengths.
Related papers
- Local control and mixed dimensions: Exploring high-temperature superconductivity in optical lattices [0.8453109131640921]
Local control and optical bilayer capabilities combined with spatially resolved measurements create a versatile toolbox.
We show how coherent pairing correlations can be accessed in a partially particle-hole transformed and rotated basis.
Finally, we introduce a scheme to measure momentum-resolved dopant densities, providing access to observables complementary to solid-state experiments.
arXiv Detail & Related papers (2024-06-04T17:59:45Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Floquet Engineering Ultracold Polar Molecules to Simulate Topological
Insulators [5.6888061544906545]
We present a near-term experimental blueprint for the quantum simulation of topological insulators using lattice-trapped ultracold polar molecules.
We focus on the so-called Hopf insulator, which represents a three-dimensional topological state of matter existing outside the conventional way.
arXiv Detail & Related papers (2021-05-21T18:00:00Z) - Two-mode Phonon Squeezing in Bose-Einstein Condensates for Gravitational
Wave Detection [0.0]
The aim of this thesis is to find whether the recently described effect of an oscillating external potential on a uniform BEC can be exploited to generate two-mode squeezed phonon states.
The considered mechanism could find applications not only in the gravitational wave detector that originally motivated this work, but more generally in the field of quantum metrology based on ultracold atoms.
arXiv Detail & Related papers (2021-01-12T13:01:10Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Synthetic Flux Attachment [0.0]
Topological field theories emerge at low energy in strongly-correlated condensed matter systems.
In particular, the study of Chern-Simons terms gives rise to the concept of flux attachment when the gauge field is coupled to matter.
We investigate the generation of flux attachment in a Bose-Einstein condensate in the presence of non-linear synthetic gauge potentials.
arXiv Detail & Related papers (2020-03-31T16:23:58Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.