Vulnerability of deep neural networks for detecting COVID-19 cases from
chest X-ray images to universal adversarial attacks
- URL: http://arxiv.org/abs/2005.11061v1
- Date: Fri, 22 May 2020 08:54:41 GMT
- Title: Vulnerability of deep neural networks for detecting COVID-19 cases from
chest X-ray images to universal adversarial attacks
- Authors: Hokuto Hirano, Kazuki Koga, Kazuhiro Takemoto
- Abstract summary: Computer-aided systems based on deep neural networks (DNNs) have been developed to rapidly and accurately detect COVID-19 cases.
We evaluate the vulnerability of DNNs to a single perturbation, called universal adversarial perturbation (UAP)
The results demonstrate that the models are vulnerable to nontargeted and targeted UAPs, even in case of small UAPs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Under the epidemic of the novel coronavirus disease 2019 (COVID-19), chest
X-ray computed tomography imaging is being used for effectively screening
COVID-19 patients. The development of computer-aided systems based on deep
neural networks (DNNs) has been advanced, to rapidly and accurately detect
COVID-19 cases, because the need for expert radiologists, who are limited in
number, forms a bottleneck for the screening. However, so far, the
vulnerability of DNN-based systems has been poorly evaluated, although DNNs are
vulnerable to a single perturbation, called universal adversarial perturbation
(UAP), which can induce DNN failure in most classification tasks. Thus, we
focus on representative DNN models for detecting COVID-19 cases from chest
X-ray images and evaluate their vulnerability to UAPs generated using simple
iterative algorithms. We consider nontargeted UAPs, which cause a task failure
resulting in an input being assigned an incorrect label, and targeted UAPs,
which cause the DNN to classify an input into a specific class. The results
demonstrate that the models are vulnerable to nontargeted and targeted UAPs,
even in case of small UAPs. In particular, 2% norm of the UPAs to the average
norm of an image in the image dataset achieves >85% and >90% success rates for
the nontargeted and targeted attacks, respectively. Due to the nontargeted
UAPs, the DNN models judge most chest X-ray images as COVID-19 cases. The
targeted UAPs make the DNN models classify most chest X-ray images into a given
target class. The results indicate that careful consideration is required in
practical applications of DNNs to COVID-19 diagnosis; in particular, they
emphasize the need for strategies to address security concerns. As an example,
we show that iterative fine-tuning of the DNN models using UAPs improves the
robustness of the DNN models against UAPs.
Related papers
- COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - RANDGAN: Randomized Generative Adversarial Network for Detection of
COVID-19 in Chest X-ray [0.0]
COVID-19 spread across the globe at an immense rate has left healthcare systems incapacitated to diagnose and test patients at the needed rate.
Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays.
In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) without the need for labels and training data.
arXiv Detail & Related papers (2020-10-06T15:58:09Z) - Bias Field Poses a Threat to DNN-based X-Ray Recognition [21.317001512826476]
bias field caused by the improper medical image acquisition process widely exists in the chest X-ray images.
In this paper, we study this problem based on the recent adversarial attack and propose a brand new attack.
Our method reveals the potential threat to the DNN-based X-ray automated diagnosis and can definitely benefit the development of bias-field-robust automated diagnosis system.
arXiv Detail & Related papers (2020-09-19T14:58:02Z) - Adversarial Exposure Attack on Diabetic Retinopathy Imagery Grading [75.73437831338907]
Diabetic Retinopathy (DR) is a leading cause of vision loss around the world.
To help diagnose it, numerous cutting-edge works have built powerful deep neural networks (DNNs) to automatically grade DR via retinal fundus images (RFIs)
RFIs are commonly affected by camera exposure issues that may lead to incorrect grades.
In this paper, we study this problem from the viewpoint of adversarial attacks.
arXiv Detail & Related papers (2020-09-19T13:47:33Z) - An Uncertainty-aware Transfer Learning-based Framework for Covid-19
Diagnosis [10.832659320593347]
This paper proposes a deep uncertainty-aware transfer learning framework for COVID-19 detection using medical images.
Four popular convolutional neural networks (CNNs) are applied to extract deep features from chest X-ray and computed tomography (CT) images.
Extracted features are then processed by different machine learning and statistical modelling techniques to identify COVID-19 cases.
arXiv Detail & Related papers (2020-07-26T20:15:01Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - A Cascaded Learning Strategy for Robust COVID-19 Pneumonia Chest X-Ray
Screening [11.250464234368478]
We introduce a comprehensive screening platform for the COVID-19 (a.k.a., SARS-CoV-2) pneumonia.
The proposed AI-based system works on chest x-ray (CXR) images to predict whether a patient is infected with the COVID-19 disease.
arXiv Detail & Related papers (2020-04-24T15:44:51Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.