Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease
- URL: http://arxiv.org/abs/2408.09005v1
- Date: Fri, 16 Aug 2024 20:15:24 GMT
- Title: Comparative Performance Analysis of Transformer-Based Pre-Trained Models for Detecting Keratoconus Disease
- Authors: Nayeem Ahmed, Md Maruf Rahman, Md Fatin Ishrak, Md Imran Kabir Joy, Md Sanowar Hossain Sabuj, Md. Sadekur Rahman,
- Abstract summary: This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease.
MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study compares eight pre-trained CNNs for diagnosing keratoconus, a degenerative eye disease. A carefully selected dataset of keratoconus, normal, and suspicious cases was used. The models tested include DenseNet121, EfficientNetB0, InceptionResNetV2, InceptionV3, MobileNetV2, ResNet50, VGG16, and VGG19. To maximize model training, bad sample removal, resizing, rescaling, and augmentation were used. The models were trained with similar parameters, activation function, classification function, and optimizer to compare performance. To determine class separation effectiveness, each model was evaluated on accuracy, precision, recall, and F1-score. MobileNetV2 was the best accurate model in identifying keratoconus and normal cases with few misclassifications. InceptionV3 and DenseNet121 both performed well in keratoconus detection, but they had trouble with questionable cases. In contrast, EfficientNetB0, ResNet50, and VGG19 had more difficulty distinguishing dubious cases from regular ones, indicating the need for model refining and development. A detailed comparison of state-of-the-art CNN architectures for automated keratoconus identification reveals each model's benefits and weaknesses. This study shows that advanced deep learning models can enhance keratoconus diagnosis and treatment planning. Future research should explore hybrid models and integrate clinical parameters to improve diagnostic accuracy and robustness in real-world clinical applications, paving the way for more effective AI-driven ophthalmology tools.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Detection of keratoconus Diseases using deep Learning [0.0]
One of the most serious corneal disorders, keratoconus is difficult to diagnose in its early stages and can result in blindness.
CNNs, one of the deep learning approaches, have recently come to light as particularly promising tools for the accurate and timely diagnosis of keratoconus.
This study was to evaluate how well different D-CNN models identified keratoconus-related diseases.
arXiv Detail & Related papers (2023-11-03T15:49:06Z) - Unleashing Modified Deep Learning Models in Efficient COVID19 Detection [0.0]
The COVID19 pandemic has affected global populations as the disease spreads rapidly.
Recent Deep Learning breakthroughs may improve COVID19 prediction and forecasting as a tool of precise and fast detection.
The most accurate models are MobileNet V3 (97.872 percent), DenseNet201 (97.567 percent), and GoogleNet Inception V1 (97.643 percent)
arXiv Detail & Related papers (2023-10-21T18:24:23Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
Domain adaptation is effective in image classification tasks where obtaining sufficient label data is challenging.
We propose a novel method, named SELDA, for stacking ensemble learning via extending three domain adaptation methods.
The experimental results using Age-Related Eye Disease Study (AREDS) benchmark ophthalmic dataset demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2022-09-27T14:19:00Z) - COVID-19 Electrocardiograms Classification using CNN Models [1.1172382217477126]
A novel approach is proposed to automatically diagnose the COVID-19 by the utilization of Electrocardiogram (ECG) data with the integration of deep learning algorithms.
CNN models have been utilized in this proposed framework, including VGG16, VGG19, InceptionResnetv2, InceptionV3, Resnet50, and Densenet201.
Our results show a relatively low accuracy in the rest of the models compared to the VGG16 model, which is due to the small size of the utilized dataset.
arXiv Detail & Related papers (2021-12-15T08:06:45Z) - Interpretable Automated Diagnosis of Retinal Disease using Deep OCT
Analysis [7.005458308454871]
We develop a CNN-based model for accurate classification of OCT scans.
We place an emphasis on producing both qualitative and quantitative explanations of the model's decisions.
Our work is the first to produce detailed explanations of the model's decisions.
arXiv Detail & Related papers (2021-09-03T17:59:34Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - COVID-19 Classification Using Staked Ensembles: A Comprehensive Analysis [0.0]
COVID-19, increasing with a massive mortality rate, led to the WHO declaring it as a pandemic.
It is crucial to perform efficient and fast diagnosis.
The reverse transcript polymerase chain reaction (RTPCR) test is conducted to detect the presence of SARS-CoV-2.
Instead chest CT (or Chest X-ray) can be used for a fast and accurate diagnosis.
arXiv Detail & Related papers (2020-10-07T07:43:57Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.