Two-stage Deep Reinforcement Learning for Inverter-based Volt-VAR
Control in Active Distribution Networks
- URL: http://arxiv.org/abs/2005.11142v1
- Date: Wed, 20 May 2020 08:02:13 GMT
- Title: Two-stage Deep Reinforcement Learning for Inverter-based Volt-VAR
Control in Active Distribution Networks
- Authors: Haotian Liu, Wenchuan Wu
- Abstract summary: We propose a novel two-stage deep reinforcement learning (DRL) method to improve the voltage profile by regulating inverter-based energy resources.
In the offline stage, a highly efficient adversarial reinforcement learning algorithm is developed to train an offline agent robust to the model mismatch.
In the sequential online stage, we transfer the offline agent safely as the online agent to perform continuous learning and controlling online with significantly improved safety and efficiency.
- Score: 3.260913246106564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-based Vol/VAR optimization method is widely used to eliminate voltage
violations and reduce network losses. However, the parameters of active
distribution networks(ADNs) are not onsite identified, so significant errors
may be involved in the model and make the model-based method infeasible. To
cope with this critical issue, we propose a novel two-stage deep reinforcement
learning (DRL) method to improve the voltage profile by regulating
inverter-based energy resources, which consists of offline stage and online
stage. In the offline stage, a highly efficient adversarial reinforcement
learning algorithm is developed to train an offline agent robust to the model
mismatch. In the sequential online stage, we transfer the offline agent safely
as the online agent to perform continuous learning and controlling online with
significantly improved safety and efficiency. Numerical simulations on IEEE
test cases not only demonstrate that the proposed adversarial reinforcement
learning algorithm outperforms the state-of-art algorithm, but also show that
our proposed two-stage method achieves much better performance than the
existing DRL based methods in the online application.
Related papers
- Distributionally Robust Off-Dynamics Reinforcement Learning: Provable
Efficiency with Linear Function Approximation [8.234072589087095]
We study off-dynamics Reinforcement Learning (RL), where the policy is trained on a source domain and deployed to a distinct target domain.
We provide the first study on online DRMDPs with function approximation for off-dynamics RL.
We introduce DR-LSVI-UCB, the first provably efficient online DRMDP algorithm for off-dynamics with function approximation.
arXiv Detail & Related papers (2024-02-23T16:01:44Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Unsupervised Deep Unfolded PGD for Transmit Power Allocation in Wireless
Systems [0.6091702876917281]
We propose a simple low-complexity TPC algorithm based on the deep unfolding of the iterative projected gradient (PGD) algorithm into layers of a deep neural network and learning the step-size parameters.
Performance evaluation in dense device-to-device (D2D) communication scenarios showed that the proposed method can achieve better performance than the iterative algorithm with more than a factor of 2 lower number of iterations.
arXiv Detail & Related papers (2023-06-20T19:51:21Z) - Deploying Offline Reinforcement Learning with Human Feedback [34.11507483049087]
Reinforcement learning has shown promise for decision-making tasks in real-world applications.
One practical framework involves training parameterized policy models from an offline dataset and deploying them in an online environment.
This approach can be risky since the offline training may not be perfect, leading to poor performance of the RL models that may take dangerous actions.
We propose an alternative framework that involves a human supervising the RL models and providing additional feedback in the online deployment phase.
arXiv Detail & Related papers (2023-03-13T12:13:16Z) - Efficient Learning of Voltage Control Strategies via Model-based Deep
Reinforcement Learning [9.936452412191326]
This article proposes a model-based deep reinforcement learning (DRL) method to design emergency control strategies for short-term voltage stability problems in power systems.
Recent advances show promising results in model-free DRL-based methods for power systems, but model-free methods suffer from poor sample efficiency and training time.
We propose a novel model-based-DRL framework where a deep neural network (DNN)-based dynamic surrogate model is utilized with the policy learning framework.
arXiv Detail & Related papers (2022-12-06T02:50:53Z) - MOORe: Model-based Offline-to-Online Reinforcement Learning [26.10368749930102]
We propose a model-based Offline-to-Online Reinforcement learning (MOORe) algorithm.
Experiment results show that our algorithm smoothly transfers from offline to online stages while enabling sample-efficient online adaption.
arXiv Detail & Related papers (2022-01-25T03:14:57Z) - Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning [63.53407136812255]
Offline Reinforcement Learning promises to learn effective policies from previously-collected, static datasets without the need for exploration.
Existing Q-learning and actor-critic based off-policy RL algorithms fail when bootstrapping from out-of-distribution (OOD) actions or states.
We propose Uncertainty Weighted Actor-Critic (UWAC), an algorithm that detects OOD state-action pairs and down-weights their contribution in the training objectives accordingly.
arXiv Detail & Related papers (2021-05-17T20:16:46Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable.
We develop a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-actions.
We find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods.
arXiv Detail & Related papers (2021-02-16T18:50:32Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.