論文の概要: Sentiment Analysis: Automatically Detecting Valence, Emotions, and Other
Affectual States from Text
- arxiv url: http://arxiv.org/abs/2005.11882v2
- Date: Thu, 14 Jan 2021 03:18:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 05:57:57.248835
- Title: Sentiment Analysis: Automatically Detecting Valence, Emotions, and Other
Affectual States from Text
- Title(参考訳): 感性分析:テキストからヴァレンス、感情、その他の感情状態を自動的に検出する
- Authors: Saif M. Mohammad
- Abstract要約: 本稿では,感情分析研究の概要を概観する。
これには、フィールドの起源、タスクの豊富な風景、課題、使用するメソッドとリソースの調査、アプリケーションが含まれる。
我々は、慎重に前向きに考えることなく、感情分析が有害な結果をもたらす可能性について論じる。
- 参考スコア(独自算出の注目度): 31.87319293259599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in machine learning have led to computer systems that are
human-like in behaviour. Sentiment analysis, the automatic determination of
emotions in text, is allowing us to capitalize on substantial previously
unattainable opportunities in commerce, public health, government policy,
social sciences, and art. Further, analysis of emotions in text, from news to
social media posts, is improving our understanding of not just how people
convey emotions through language but also how emotions shape our behaviour.
This article presents a sweeping overview of sentiment analysis research that
includes: the origins of the field, the rich landscape of tasks, challenges, a
survey of the methods and resources used, and applications. We also discuss
discuss how, without careful fore-thought, sentiment analysis has the potential
for harmful outcomes. We outline the latest lines of research in pursuit of
fairness in sentiment analysis.
- Abstract(参考訳): 機械学習の最近の進歩は、人間の行動に類似したコンピュータシステムへとつながった。
感情をテキストで自動決定する感覚分析は、商取引、公衆衛生、政府の政策、社会科学、芸術において、これまで実現不可能だったような機会に乗じることができる。
さらに、ニュースからソーシャルメディアへの投稿まで、テキスト中の感情の分析は、人々が言語を通して感情を伝える方法だけでなく、感情が行動を形成する方法に対する理解を改善しています。
本稿では,フィールドの起源,タスクの豊かな景観,課題,使用方法とリソースのサーベイ,アプリケーションなどを含む感情分析研究の概要を紹介する。
また,感情分析が有害な結果をもたらす可能性について,慎重に考えることなく議論する。
本稿では,感情分析における公平性を追求する最新の研究動向について概説する。
関連論文リスト
- SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations [53.60993109543582]
SemEval-2024 Task 3 "Multimodal Emotion Cause Analysis in Conversations" は、会話からすべての感情とそれに対応する原因を抽出することを目的としている。
異なるモダリティ設定の下では、2つのサブタスクから構成される: 会話におけるテキスト感情因果ペア抽出(TECPE)と会話におけるマルチモーダル感情因果ペア抽出(MECPE)である。
本稿では,タスク,データセット,評価設定について紹介し,トップチームのシステムを要約し,参加者の知見について議論する。
論文 参考訳(メタデータ) (2024-05-19T09:59:00Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
ストレスと抑うつは日々のタスクにおけるエンゲージメントに影響を与え、彼らの相互作用を理解する必要性を強調します。
この調査は、ストレス、抑うつ、エンゲージメントを分析する計算手法を同時に探求した最初のものである。
論文 参考訳(メタデータ) (2024-03-09T11:16:09Z) - Unlocking the Emotional World of Visual Media: An Overview of the
Science, Research, and Impact of Understanding Emotion [24.920797480215242]
本稿では、視覚メディアにおける感情分析の分野について概観する。
本稿では、感情の心理的基礎と、イメージやビデオからの感情の理解の基盤となる計算原理について論じる。
これはコンピューティングにおける「Holy Grail」研究の問題であり、今後の調査において重要な方向を示すものであると我々は主張する。
論文 参考訳(メタデータ) (2023-07-25T12:47:21Z) - BERT-Deep CNN: State-of-the-Art for Sentiment Analysis of COVID-19
Tweets [0.7850663096185592]
新型コロナウイルスのパンデミックは、ソーシャルメディアプラットフォーム上で議論されている出来事の1つだ。
パンデミックの状況では、ソーシャルメディアのテキストを分析して感情的傾向を明らかにすることが非常に有用である。
我々は、最先端のBERTモデルとDeep CNNモデルを用いて、ソーシャルメディアを通じて、新型コロナウイルスのパンデミックに対する社会の認識を研究する。
論文 参考訳(メタデータ) (2022-11-04T14:35:56Z) - Natural Language Processing for Cognitive Analysis of Emotions [0.0]
本稿では,感情とその原因を探索する新たなアノテーション手法と,感情場面の自伝的記述からなる新たなフランス語データセットを提案する。
テキストは、A. Finkelによって開発された感情の認知分析を適用して、人々が感情管理を改善する手助けをすることで収集された。
論文 参考訳(メタデータ) (2022-10-11T09:47:00Z) - Affection: Learning Affective Explanations for Real-World Visual Data [50.28825017427716]
我々は,85,007枚の公開画像に対して,感情反応と自由形式のテキスト説明を含む大規模データセットを研究コミュニティに導入し,共有する。
本研究は, 被写体集団に大きな支持を得て, 潜在的に有意な感情反応をとらえる上で, 重要な共通基盤があることを示唆する。
私たちの研究は、より豊かで、より人間中心で、感情に敏感な画像分析システムへの道を開くものです。
論文 参考訳(メタデータ) (2022-10-04T22:44:17Z) - Computational Emotion Analysis From Images: Recent Advances and Future
Directions [79.05003998727103]
本章では,画像感情分析(IEA)を計算的観点から導入することを目的としている。
心理学の一般的な感情表現モデルから始めます。
そして、研究者たちが解決しようとしている重要な計算問題を定義します。
論文 参考訳(メタデータ) (2021-03-19T13:33:34Z) - Manipulating emotions for ground truth emotion analysis [0.5660207256468972]
本稿では,テキストを用いた感情分析手法として,実験行動研究からオンライン感情誘導技術を導入する。
テキストデータは、幸せ、中立、悲しい状態にランダムに割り当てられた参加者から収集された。
次に、レキシコンアプローチが誘発感情の回復にどの程度役立つかを検討した。
論文 参考訳(メタデータ) (2020-06-16T07:03:28Z) - A computational model implementing subjectivity with the 'Room Theory'.
The case of detecting Emotion from Text [68.8204255655161]
本研究は,テキスト分析における主観性と一般的文脈依存性を考慮した新しい手法を提案する。
単語間の類似度を用いて、ベンチマーク中の要素の相対的関連性を抽出することができる。
この方法は、主観的評価がテキストの相対値や意味を理解するために関係しているすべてのケースに適用できる。
論文 参考訳(メタデータ) (2020-05-12T21:26:04Z) - Survey on Visual Sentiment Analysis [87.20223213370004]
本稿では、関連する出版物をレビューし、視覚知覚分析の分野の概要を概観する。
また,3つの視点から一般的な視覚知覚分析システムの設計原理について述べる。
様々なレベルの粒度と、異なる方法でイメージに対する感情に影響を与えるコンポーネントを考慮し、問題の定式化について論じる。
論文 参考訳(メタデータ) (2020-04-24T10:15:22Z) - Deriving Emotions and Sentiments from Visual Content: A Disaster
Analysis Use Case [10.161936647987515]
ソーシャルネットワークとユーザの感情をテキスト、ビジュアル、オーディオコンテンツで共有する傾向は、感情分析における新たな機会と課題を生み出している。
本稿では、視覚的感情分析を紹介し、本研究領域における機会と課題に焦点を当て、テキスト的感情分析と対比する。
データ収集,アノテーション,モデル選択,実装,評価から,視覚的感情分析のさまざまな側面をカバーする,災害関連画像の深い視覚的感情分析手法を提案する。
論文 参考訳(メタデータ) (2020-02-03T08:48:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。