Design Challenges for GDPR RegTech
- URL: http://arxiv.org/abs/2005.12138v1
- Date: Thu, 21 May 2020 18:55:11 GMT
- Title: Design Challenges for GDPR RegTech
- Authors: Paul Ryan, Martin Crane and Rob Brennan
- Abstract summary: The Accountability Principle of the methodologies requires that an organisation can demonstrate compliance with the regulations.
A survey of compliance software solutions shows significant gaps in their ability to demonstrate compliance.
RegTech has brought great success to financial compliance, resulting in reduced risk, cost saving and enhanced financial regulatory compliance.
- Score: 0.3867363075280544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Accountability Principle of the GDPR requires that an organisation can
demonstrate compliance with the regulations. A survey of GDPR compliance
software solutions shows significant gaps in their ability to demonstrate
compliance. In contrast, RegTech has recently brought great success to
financial compliance, resulting in reduced risk, cost saving and enhanced
financial regulatory compliance. It is shown that many GDPR solutions lack
interoperability features such as standard APIs, meta-data or reports and they
are not supported by published methodologies or evidence to support their
validity or even utility. A proof of concept prototype was explored using a
regulator based self-assessment checklist to establish if RegTech best practice
could improve the demonstration of GDPR compliance. The application of a
RegTech approach provides opportunities for demonstrable and validated GDPR
compliance, notwithstanding the risk reductions and cost savings that RegTech
can deliver. This paper demonstrates a RegTech approach to GDPR compliance can
facilitate an organisation meeting its accountability obligations.
Related papers
- RegNLP in Action: Facilitating Compliance Through Automated Information Retrieval and Answer Generation [51.998738311700095]
Regulatory documents, characterized by their length, complexity and frequent updates, are challenging to interpret.
RegNLP is a multidisciplinary subfield aimed at simplifying access to and interpretation of regulatory rules and obligations.
ObliQA dataset contains 27,869 questions derived from the Abu Dhabi Global Markets (ADGM) financial regulation document collection.
arXiv Detail & Related papers (2024-09-09T14:44:19Z) - Certified Safe: A Schematic for Approval Regulation of Frontier AI [0.0]
An approval regulation scheme is one in which a firm cannot legally market, or in some cases develop, a product without explicit approval from a regulator.
This report proposes an approval regulation schematic for only the largest AI projects in which scrutiny begins before training and continues through to post-deployment monitoring.
arXiv Detail & Related papers (2024-08-12T15:01:03Z) - Enhancing Legal Compliance and Regulation Analysis with Large Language Models [0.0]
This research explores the application of Large Language Models (LLMs) to accurately classify legal provisions and automate compliance checks.
Our findings demonstrate promising results, indicating LLMs' significant potential to enhance legal compliance and regulatory analysis efficiency, notably by reducing manual workload and improving accuracy within reasonable time financial constraints.
arXiv Detail & Related papers (2024-04-26T16:40:49Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
Learning-based neural network (NN) control policies have shown impressive empirical performance in a wide range of tasks in robotics and control.
Lyapunov stability guarantees over the region-of-attraction (ROA) for NN controllers with nonlinear dynamical systems are challenging to obtain.
We demonstrate a new framework for learning NN controllers together with Lyapunov certificates using fast empirical falsification and strategic regularizations.
arXiv Detail & Related papers (2024-04-11T17:49:15Z) - Towards an Enforceable GDPR Specification [49.1574468325115]
Privacy by Design (PbD) is prescribed by modern privacy regulations such as the EU's.
One emerging technique to realize PbD is enforcement (RE)
We present a set of requirements and an iterative methodology for creating formal specifications of legal provisions.
arXiv Detail & Related papers (2024-02-27T09:38:51Z) - A Multi-solution Study on GDPR AI-enabled Completeness Checking of DPAs [3.1002416427168304]
General Data Protection Regulation (DPA) requires a data processing agreement (DPA) which regulates processing and ensures personal data remains protected.
Checking completeness of DPA according to prerequisite provisions is therefore an essential to ensure that requirements are complete.
We propose an automation strategy to address the completeness checking of DPAs against stipulated provisions.
arXiv Detail & Related papers (2023-11-23T10:05:52Z) - Trustworthy Artificial Intelligence and Process Mining: Challenges and
Opportunities [0.8602553195689513]
We show that process mining can provide a useful framework for gaining fact-based visibility to AI compliance process execution.
We provide for an automated approach to analyze, remediate and monitor uncertainty in AI regulatory compliance processes.
arXiv Detail & Related papers (2021-10-06T12:50:47Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs) are popular tools for enforcing safety and stability of a controlled system, respectively.
We present a Gaussian Process (GP)-based approach to tackle the problem of model uncertainty in safety-critical controllers that use CBFs and CLFs.
arXiv Detail & Related papers (2021-06-13T23:08:49Z) - Certification of Iterative Predictions in Bayesian Neural Networks [79.15007746660211]
We compute lower bounds for the probability that trajectories of the BNN model reach a given set of states while avoiding a set of unsafe states.
We use the lower bounds in the context of control and reinforcement learning to provide safety certification for given control policies.
arXiv Detail & Related papers (2021-05-21T05:23:57Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
Credit Risk Modelling plays a paramount role.
Recent machine and deep learning techniques have been applied to the task.
We suggest to use LIME technique to tackle the explainability problem in this field.
arXiv Detail & Related papers (2020-12-30T10:27:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.