論文の概要: Reactive Sample Size for Heuristic Search in Simulation-based
Optimization
- arxiv url: http://arxiv.org/abs/2005.12141v1
- Date: Mon, 25 May 2020 14:38:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 05:37:51.601187
- Title: Reactive Sample Size for Heuristic Search in Simulation-based
Optimization
- Title(参考訳): シミュレーションに基づく最適化におけるヒューリスティック検索のためのリアクティブサンプルサイズ
- Authors: Manuel Dalcastagn\'e, Andrea Mariello, Roberto Battiti
- Abstract要約: 本稿では,パラメトリックテストとインディファレンスゾーン選択に基づく新しい反応性サンプルサイズアルゴリズムを提案する。
テストでは、人工的なノイズレベルが拡張されたベンチマーク機能と、ホテルの収益管理のためのシミュレーションベースの最適化ツールが採用されている。
- 参考スコア(独自算出の注目度): 2.9005223064604073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In simulation-based optimization, the optimal setting of the input parameters
of the objective function can be determined by heuristic optimization
techniques. However, when simulators model the stochasticity of real-world
problems, their output is a random variable and multiple evaluations of the
objective function are necessary to properly compare the expected performance
of different parameter settings. This paper presents a novel reactive sample
size algorithm based on parametric tests and indifference-zone selection, which
can be used for improving the efficiency and robustness of heuristic
optimization methods. The algorithm reactively decides, in an online manner,
the sample size to be used for each comparison during the optimization
according to observed statistical evidence. Tests employ benchmark functions
extended with artificial levels of noise and a simulation-based optimization
tool for hotel revenue management. Experimental results show that the reactive
method can improve the efficiency and robustness of simulation-based
optimization techniques.
- Abstract(参考訳): シミュレーションに基づく最適化では、対象関数の入力パラメータの最適設定はヒューリスティック最適化手法によって決定できる。
しかし、シミュレータが実世界の問題の確率性をモデル化する場合、その出力はランダム変数であり、異なるパラメータ設定の期待性能を適切に比較するためには、目的関数の複数の評価が必要である。
本稿では, パラメトリックテストと非差分ゾーン選択に基づく, ヒューリスティック最適化手法の効率とロバスト性を向上させるための新しいリアクティブサンプルサイズアルゴリズムを提案する。
アルゴリズムは、オンラインの方法で、観察された統計証拠に従って、最適化中の各比較に使用するサンプルサイズを反応的に決定する。
テストでは、人工的なノイズレベルを拡張したベンチマーク機能と、ホテル収益管理のためのシミュレーションベースの最適化ツールを使用している。
実験の結果, シミュレーションに基づく最適化手法の効率とロバスト性を向上させることができた。
関連論文リスト
- Quantum-Enhanced Simulation-Based Optimization for Newsvendor Problems [5.500172106704342]
古典モンテカルロシミュレーションと比較して量子振幅推定(QAE)の高効率性を利用する。
本研究では,シミュレーションに基づく最適化に量子エンハンスアルゴリズムを用い,NP-hardとして知られる古典ニュース問題の変種を解く。
論文 参考訳(メタデータ) (2024-03-26T05:14:50Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Multi-fidelity Constrained Optimization for Stochastic Black Box
Simulators [1.6385815610837167]
上記の問題に対処するために、Scout-Nd (Stochastic Constrained Optimization for N dimensions) アルゴリズムを導入する。
Scout-Ndは効率よく勾配を推定し、推定器勾配のノイズを低減し、計算労力をさらに削減するために多重忠実性スキームを適用する。
提案手法を標準ベンチマークで検証し,既存の手法よりも優れた性能を示すパラメータの最適化の有効性を示す。
論文 参考訳(メタデータ) (2023-11-25T23:36:38Z) - Federated Conditional Stochastic Optimization [110.513884892319]
条件付き最適化は、不変学習タスク、AUPRC、AMLなど、幅広い機械学習タスクで見られる。
本稿では,分散フェデレーション学習のためのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-04T01:47:37Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Bayesian multi-objective optimization for stochastic simulators: an
extension of the Pareto Active Learning method [0.0]
本稿では,高い出力分散を有するシミュレータの多目的最適化に着目する。
我々はベイズ最適化アルゴリズムを用いて最適化すべき関数の予測を行う。
論文 参考訳(メタデータ) (2022-07-08T11:51:48Z) - Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
Optimization [1.7513645771137178]
勾配情報のない制約のない最適化問題を考察する。
適応的なサンプリング準ニュートン法を提案し、共通乱数フレームワーク内の有限差を用いてシミュレーション関数の勾配を推定する。
そこで本研究では, 標準試験と内積準ニュートン試験の修正版を開発し, 近似に使用する試料サイズを制御し, 最適解の近傍に大域収束結果を与える。
論文 参考訳(メタデータ) (2021-09-24T21:49:25Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - BOSH: Bayesian Optimization by Sampling Hierarchically [10.10241176664951]
本稿では,階層的なガウス過程と情報理論の枠組みを組み合わせたBOルーチンを提案する。
BOSHは, ベンチマーク, シミュレーション最適化, 強化学習, ハイパーパラメータチューニングタスクにおいて, 標準BOよりも効率的で高精度な最適化を実現する。
論文 参考訳(メタデータ) (2020-07-02T07:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。