論文の概要: Bayesian multi-objective optimization for stochastic simulators: an
extension of the Pareto Active Learning method
- arxiv url: http://arxiv.org/abs/2207.03842v1
- Date: Fri, 8 Jul 2022 11:51:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-11 14:33:35.179993
- Title: Bayesian multi-objective optimization for stochastic simulators: an
extension of the Pareto Active Learning method
- Title(参考訳): 確率シミュレータのベイズ的多目的最適化:Pareto Active Learning法の拡張
- Authors: Bruno Barracosa (L2S, GdR MASCOT-NUM), Julien Bect (L2S, GdR
MASCOT-NUM), H\'elo\"ise Dutrieux Baraffe, Juliette Morin, Josselin Fournel,
Emmanuel Vazquez (L2S, GdR MASCOT-NUM)
- Abstract要約: 本稿では,高い出力分散を有するシミュレータの多目的最適化に着目する。
我々はベイズ最適化アルゴリズムを用いて最適化すべき関数の予測を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article focuses on the multi-objective optimization of stochastic
simulators with high output variance, where the input space is finite and the
objective functions are expensive to evaluate. We rely on Bayesian optimization
algorithms, which use probabilistic models to make predictions about the
functions to be optimized. The proposed approach is an extension of the Pareto
Active Learning (PAL) algorithm for the estimation of Pareto-optimal solutions
that makes it suitable for the stochastic setting. We named it Pareto Active
Learning for Stochastic Simulators (PALS). The performance of PALS is assessed
through numerical experiments over a set of bi-dimensional, bi-objective test
problems. PALS exhibits superior performance when compared to other
scalarization-based and random-search approaches.
- Abstract(参考訳): 本稿では,入力空間が有限であり,目的関数の評価に費用がかかる確率的シミュレータの多目的最適化に焦点をあてる。
確率モデルを用いて最適化すべき関数の予測を行うベイズ最適化アルゴリズムに依存している。
提案手法は,pareto active learning (pal)アルゴリズムを拡張し,確率的設定に適したpareto-optimal solutionの推定を行う。
確率シミュレータのためのPareto Active Learning (PALS) と名付けた。
PALSの性能は, 二次元的, 二重物体的テスト問題に対する数値実験によって評価される。
PALSは、他のスカラー化に基づくランダム検索手法と比較して優れた性能を示す。
関連論文リスト
- Poisson Process for Bayesian Optimization [126.51200593377739]
本稿では、Poissonプロセスに基づくランキングベースの代理モデルを提案し、Poisson Process Bayesian Optimization(PoPBO)と呼ばれる効率的なBOフレームワークを提案する。
従来のGP-BO法と比較すると,PoPBOはコストが低く,騒音に対する堅牢性も良好であり,十分な実験により検証できる。
論文 参考訳(メタデータ) (2024-02-05T02:54:50Z) - Simulation Based Bayesian Optimization [0.6526824510982799]
本稿では,獲得関数を最適化するための新しいアプローチとして,シミュレーションベースベイズ最適化(SBBO)を提案する。
SBBOは、離散変数を持つ空間に適した代理モデルを使用することができる。
代理モデルの様々な選択を用いたSBBO法の有効性を実証的に実証した。
論文 参考訳(メタデータ) (2024-01-19T16:56:11Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Multi-objective hyperparameter optimization with performance uncertainty [62.997667081978825]
本稿では,機械学習アルゴリズムの評価における不確実性を考慮した多目的ハイパーパラメータ最適化の結果について述べる。
木構造型Parzen Estimator(TPE)のサンプリング戦略と、ガウス過程回帰(GPR)と異種雑音の訓練後に得られたメタモデルを組み合わせる。
3つの解析的テスト関数と3つのML問題の実験結果は、多目的TPEとGPRよりも改善したことを示している。
論文 参考訳(メタデータ) (2022-09-09T14:58:43Z) - B\'ezier Flow: a Surface-wise Gradient Descent Method for
Multi-objective Optimization [12.487037582320804]
確率近似学習(PAC)における最適化アルゴリズムの安定性を向上する。
勾配勾配勾配に基づく単目的最適化アルゴリズムから導かれる多目的最適化アルゴリズムはPAC安定であることを示す。
論文 参考訳(メタデータ) (2022-05-23T07:47:58Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Stochastic Learning Approach to Binary Optimization for Optimal Design
of Experiments [0.0]
本稿では,偏微分方程式などの数学モデルによるベイズ逆問題に対する最適実験設計 (OED) のための二項最適化への新しいアプローチを提案する。
OEDユーティリティ関数、すなわち正規化された最適性勾配はベルヌーイ分布に対する期待の形で目的関数にキャストされる。
この目的を確率的最適化ルーチンを用いて最適な観測方針を求めることで解決する。
論文 参考訳(メタデータ) (2021-01-15T03:54:12Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - BOSH: Bayesian Optimization by Sampling Hierarchically [10.10241176664951]
本稿では,階層的なガウス過程と情報理論の枠組みを組み合わせたBOルーチンを提案する。
BOSHは, ベンチマーク, シミュレーション最適化, 強化学習, ハイパーパラメータチューニングタスクにおいて, 標準BOよりも効率的で高精度な最適化を実現する。
論文 参考訳(メタデータ) (2020-07-02T07:35:49Z) - Reactive Sample Size for Heuristic Search in Simulation-based
Optimization [2.9005223064604073]
本稿では,パラメトリックテストとインディファレンスゾーン選択に基づく新しい反応性サンプルサイズアルゴリズムを提案する。
テストでは、人工的なノイズレベルが拡張されたベンチマーク機能と、ホテルの収益管理のためのシミュレーションベースの最適化ツールが採用されている。
論文 参考訳(メタデータ) (2020-05-25T14:38:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。