Emission-aware Energy Storage Scheduling for a Greener Grid
- URL: http://arxiv.org/abs/2005.12234v1
- Date: Mon, 25 May 2020 17:11:10 GMT
- Title: Emission-aware Energy Storage Scheduling for a Greener Grid
- Authors: Rishikesh Jha, Stephen Lee, Srinivasan Iyengar, Mohammad H.
Hajiesmaili, David Irwin, Prashant Shenoy
- Abstract summary: We study the problem of using energy storage in the grid to reduce the grid's carbon emissions.
We use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants.
Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.
- Score: 3.3666214913565224
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reducing our reliance on carbon-intensive energy sources is vital for
reducing the carbon footprint of the electric grid. Although the grid is seeing
increasing deployments of clean, renewable sources of energy, a significant
portion of the grid demand is still met using traditional carbon-intensive
energy sources. In this paper, we study the problem of using energy storage
deployed in the grid to reduce the grid's carbon emissions. While energy
storage has previously been used for grid optimizations such as peak shaving
and smoothing intermittent sources, our insight is to use distributed storage
to enable utilities to reduce their reliance on their less efficient and most
carbon-intensive power plants and thereby reduce their overall emission
footprint. We formulate the problem of emission-aware scheduling of distributed
energy storage as an optimization problem, and use a robust optimization
approach that is well-suited for handling the uncertainty in load predictions,
especially in the presence of intermittent renewables such as solar and wind.
We evaluate our approach using a state of the art neural network load
forecasting technique and real load traces from a distribution grid with 1,341
homes. Our results show a reduction of >0.5 million kg in annual carbon
emissions -- equivalent to a drop of 23.3% in our electric grid emissions.
Related papers
- Carbon Footprint Reduction for Sustainable Data Centers in Real-Time [2.794742330785396]
We propose a Data Center Carbon Footprint Reduction (DC-CFR) multi-agent Reinforcement Learning (MARL) framework to optimize data centers for the objectives of carbon footprint reduction, energy consumption, and energy cost.
The results show that the DC-CFR MARL agents effectively resolved the complex interdependencies in optimizing cooling, load shifting, and energy storage in real-time for various locations under real-world dynamic weather and grid carbon intensity conditions.
arXiv Detail & Related papers (2024-03-21T02:59:56Z) - Equitable Network-Aware Decarbonization of Residential Heating at City
Scale [0.9099663022952497]
We present a network-aware optimization framework for decarbonizing residential heating at city scale.
We apply our framework to a city in the New England region of the U.S. using real-world gas usage, electric usage, and grid infrastructure data.
arXiv Detail & Related papers (2023-01-11T22:55:30Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Power Grid Congestion Management via Topology Optimization with
AlphaZero [0.27998963147546135]
We propose an AlphaZero-based grid topology optimization agent as a non-costly, carbon-free congestion management alternative.
Our approach ranked 1st in the WCCI 2022 Learning to Run a Power Network (L2RPN) competition.
arXiv Detail & Related papers (2022-11-10T14:39:28Z) - Battery and Hydrogen Energy Storage Control in a Smart Energy Network
with Flexible Energy Demand using Deep Reinforcement Learning [2.5666730153464465]
We introduce a hybrid energy storage system composed of battery and hydrogen energy storage.
We propose a deep reinforcement learning-based control strategy to optimise the scheduling of the hybrid energy storage system and energy demand in real-time.
arXiv Detail & Related papers (2022-08-26T16:47:48Z) - Sustainability using Renewable Electricity (SuRE) towards NetZero
Emissions [0.0]
Growth in energy demand poses serious threat to the environment.
Most of the energy sources are non-renewable and based on fossil fuels, which leads to emission of harmful greenhouse gases.
We present a scalable AI based solution that can be used by organizations to increase their overall renewable electricity share in total energy consumption.
arXiv Detail & Related papers (2022-02-26T10:04:26Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - Optimizing carbon tax for decentralized electricity markets using an
agent-based model [69.3939291118954]
Averting the effects of anthropogenic climate change requires a transition from fossil fuels to low-carbon technology.
Carbon taxes have been shown to be an efficient way to aid in this transition.
We use the NSGA-II genetic algorithm to minimize average electricity price and relative carbon intensity of the electricity mix.
arXiv Detail & Related papers (2020-05-28T06:54:43Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
We study a risk-aware energy scheduling problem for a microgrid-powered MEC network.
We derive the solution by applying a multi-agent deep reinforcement learning (MADRL)-based advantage actor-critic (A3C) algorithm with shared neural networks.
arXiv Detail & Related papers (2020-02-21T02:14:38Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.