Arctic: A Field Programmable Quantum Array Scheduling Technique
- URL: http://arxiv.org/abs/2405.06183v1
- Date: Fri, 10 May 2024 01:56:01 GMT
- Title: Arctic: A Field Programmable Quantum Array Scheduling Technique
- Authors: Ethan Decker,
- Abstract summary: I present the first compiler pass designed to optimize reconfigurable coupling in zoned neutral atom architectures.
I approach qubit mapping and movement scheduling as a max-cut and layered cross-minimization problem.
I compare the method across various algorithms sourced from Supermarq and Qasmbench.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Advancements in neutral atom quantum computers have positioned them as a valuable framework for quantum computing, largely due to their prolonged coherence times and capacity for high-fidelity gate operations. Recently, neutral atom computers have enabled coherent atom shuttling to facilitate long-range connectivity as a high-fidelity alternative to traditional gate-based methods. However, these inherent advantages are accompanied by novel constraints, making it challenging to create optimal movement schedules. In this study I present, to the best of my knowledge, the first compiler pass designed to optimize reconfigurable coupling in zoned neutral atom architectures, while adhering to the reconfigurability constraints of these systems. I approach qubit mapping and movement scheduling as a max-cut and layered cross-minimization problem while enhancing support for spatially complex algorithms through a novel "stacking" feature that balances the qubit array's spatial dimensions with algorithmic parallelism. I compare the method across various algorithms sourced from Supermarq and Qasmbench where the compiler pass represents the first exclusively movement-based technique to achieve compilation times consistently within seconds. Results also demonstrate that the approach reduces pulse counts by up to 5x and increases fidelity by up to 7x compared to existing methods on currently available technology.
Related papers
- ZAP: Zoned Architecture and Parallelizable Compiler for Field Programmable Atom Array [9.421018957499186]
We present a novel zoned architecture for neutral atom quantum compilation.
Our method achieves a 5.4x increase in fidelity when the system need 100 qubits.
arXiv Detail & Related papers (2024-11-21T11:39:21Z) - PowerMove: Optimizing Compilation for Neutral Atom Quantum Computers with Zoned Architecture [15.027253937154006]
We present PowerMove, an efficient compiler for Neutral atom-based quantum computers (NAQCs)
By recognizing and leveraging the interdependencies between these key aspects, PowerMove unlocks new optimization opportunities.
Our evaluation demonstrates an improvement in fidelity by several orders of magnitude compared to the state-of-the-art methods.
arXiv Detail & Related papers (2024-11-19T06:22:57Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
We present Unified Spectral Bundling with Sketching (USBS), a provably correct, fast and scalable algorithm for solving massive SDPs.
USBS provides a 500x speed-up over the state-of-the-art scalable SDP solver on an instance with over 2 billion decision variables.
arXiv Detail & Related papers (2023-12-19T02:27:22Z) - Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on
Multi-Core Architectures [1.1288814203214292]
Quantum computers are expected to adopt a modular approach, featuring clusters of tightly connected quantum bits with sparser connections between these clusters.
Efficiently distributing qubits across multiple processing cores is critical for improving quantum computing systems' performance and scalability.
We propose the Hungarian Qubit Assignment (HQA) algorithm, which leverages the Hungarian algorithm to improve qubit-to-core assignment.
arXiv Detail & Related papers (2023-09-21T15:48:45Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Compiling Quantum Circuits for Dynamically Field-Programmable Neutral Atoms Array Processors [5.012570785656963]
Dynamically field-programmable qubit arrays (DPQA) have emerged as a promising platform for quantum information processing.
In this paper, we consider a DPQA architecture that contains multiple arrays and supports 2D array movements.
We show that our DPQA-based compiled circuits feature reduced scaling overhead compared to a grid fixed architecture.
arXiv Detail & Related papers (2023-06-06T08:13:10Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Accelerating variational quantum algorithms with multiple quantum
processors [78.36566711543476]
Variational quantum algorithms (VQAs) have the potential of utilizing near-term quantum machines to gain certain computational advantages.
Modern VQAs suffer from cumbersome computational overhead, hampered by the tradition of employing a solitary quantum processor to handle large data.
Here we devise an efficient distributed optimization scheme, called QUDIO, to address this issue.
arXiv Detail & Related papers (2021-06-24T08:18:42Z) - Quantum optimization via four-body Rydberg gates [0.0]
We propose and analyze a fast, high fidelity four-body Rydberg parity gate.
Our gate relies on onetime-optimized adiabatic laser pulses and is fully programmable by adjusting two hold-times during operation.
We demonstrate an implementation of the quantum approximate optimization algorithm (QAOA) for a small scale test problem.
arXiv Detail & Related papers (2021-06-04T18:33:09Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Time-Sliced Quantum Circuit Partitioning for Modular Architectures [67.85032071273537]
Current quantum computer designs will not scale.
To scale beyond small prototypes, quantum architectures will likely adopt a modular approach with clusters of tightly connected quantum bits and sparser connections between clusters.
We exploit this clustering and the statically-known control flow of quantum programs to create tractable partitionings which map quantum circuits to modular physical machines one time slice at a time.
arXiv Detail & Related papers (2020-05-25T17:58:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.