QCD thermalization: Ab initio approaches and interdisciplinary
connections
- URL: http://arxiv.org/abs/2005.12299v3
- Date: Tue, 17 Aug 2021 11:26:28 GMT
- Title: QCD thermalization: Ab initio approaches and interdisciplinary
connections
- Authors: J\"urgen Berges, Michal P. Heller, Aleksas Mazeliauskas, Raju
Venugopalan
- Abstract summary: Heavy-ion collisions provide strong evidence for the formation of a quark-gluon plasma.
How the strongly correlated quark-gluon matter forms in a heavy-ion collision, its properties off-equilibrium, and the thermalization process in the plasma are outstanding problems in QCD.
We outline the interdisciplinary connections of different stages of the thermalization process to non-equilibrium dynamics in other systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heavy-ion collisions at BNL's Relativistic Heavy Ion Collider and CERN's
Large Hadron Collider provide strong evidence for the formation of a
quark-gluon plasma, with temperatures extracted from relativistic viscous
hydrodynamic simulations shown to be well above the transition temperature from
hadron matter. How the strongly correlated quark-gluon matter forms in a
heavy-ion collision, its properties off-equilibrium, and the thermalization
process in the plasma, are outstanding problems in QCD. We review here the
theoretical progress in this field in weak coupling QCD effective field
theories and in strong coupling holographic approaches based on gauge-gravity
duality. We outline the interdisciplinary connections of different stages of
the thermalization process to non-equilibrium dynamics in other systems across
energy scales ranging from inflationary cosmology, to strong field QED, to
ultracold atomic gases, with emphasis on the universal dynamics of non-thermal
and of hydrodynamic attractors. We survey measurements in heavy-ion collisions
that are sensitive to the early non-equilibrium stages of the collision and
discuss the potential for future measurements. We summarize the current
state-of-the art in thermalization studies and identify promising avenues for
further progress.
Related papers
- Thermodynamics and entanglement entropy of the non-Hermitian SSH model [0.0]
Topological phase transitions are found in a variety of systems and were shown to be deeply related with a thermodynamic description through scaling relations.
Here, we investigate the entanglement entropy, which is a quantity that captures the central charge of a critical model and the thermodynamics of the non-reciprocal Su-Schrieffer-Heeger model.
arXiv Detail & Related papers (2024-06-18T22:34:11Z) - Eigenstate Thermalization and its breakdown in Quantum Spin Chains with
Inhomogeneous Interactions [7.257279589646522]
The eigenstate thermalization hypothesis (ETH) is a successful theory that establishes the criteria for ergodicity and thermalization in isolated quantum many-body systems.
We investigate the thermalization properties of spin-$ 1/2 $ XXZ chain with linearly-inhomogeneous interactions.
arXiv Detail & Related papers (2023-10-30T08:12:21Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Exact Solution for A Real Polaritonic System Under Vibrational Strong
Coupling in Thermodynamic Equilibrium: Absence of Zero Temperature and Loss
of Light-Matter Entanglement [0.0]
First exact quantum simulation of a real molecular system (HD$+$) under strong ro-vibrational coupling to a quantized optical cavity mode in thermal equilibrium is presented.
arXiv Detail & Related papers (2022-08-02T09:21:52Z) - Variational thermal quantum simulation of the lattice Schwinger model [0.0]
We propose a variational approach, using the lattice Schwinger model, to simulate the confinement or deconfinement.
Results of numeral simulation show that the string tension decreases both along the increasing of the temperature and the chemical potential.
Our work paves a way for exploiting near-term quantum computers for investigating the phase diagram of finite-temperature and finite density for nuclear matters.
arXiv Detail & Related papers (2022-05-25T13:29:05Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - A perspective on ab initio modeling of polaritonic chemistry: The role
of non-equilibrium effects and quantum collectivity [0.0]
This perspective provides a brief introduction into the theoretical complexity of polaritonic chemistry.
ab initio methods are used to tackle this complexity.
Various extensions towards a refined description of cavity-modified chemistry are introduced.
arXiv Detail & Related papers (2021-08-27T12:48:57Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH
in collision with an ultracold Sr atom [62.60678272919008]
We report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states.
Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection.
arXiv Detail & Related papers (2020-06-26T23:27:25Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.