Eigenstate Thermalization and its breakdown in Quantum Spin Chains with
Inhomogeneous Interactions
- URL: http://arxiv.org/abs/2310.19333v2
- Date: Thu, 2 Nov 2023 08:01:06 GMT
- Title: Eigenstate Thermalization and its breakdown in Quantum Spin Chains with
Inhomogeneous Interactions
- Authors: Ding-Zu Wang, Hao Zhu, Jian Cui, Javier Arg\"uello-Luengo, Maciej
Lewenstein, Guo-Feng Zhang, Piotr Sierant, Shi-Ju Ran
- Abstract summary: The eigenstate thermalization hypothesis (ETH) is a successful theory that establishes the criteria for ergodicity and thermalization in isolated quantum many-body systems.
We investigate the thermalization properties of spin-$ 1/2 $ XXZ chain with linearly-inhomogeneous interactions.
- Score: 7.257279589646522
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The eigenstate thermalization hypothesis (ETH) is a successful theory that
establishes the criteria for ergodicity and thermalization in isolated quantum
many-body systems. In this work, we investigate the thermalization properties
of spin-$ 1/2 $ XXZ chain with linearly-inhomogeneous interactions. We
demonstrate that introduction of the inhomogeneous interactions leads to an
onset of quantum chaos and thermalization, which, however, becomes inhibited
for sufficiently strong inhomogeneity. To exhibit ETH, and to display its
breakdown upon varying the strength of interactions, we probe statistics of
energy levels and properties of matrix elements of local observables in
eigenstates of the inhomogeneous XXZ spin chain. Moreover, we investigate the
dynamics of the entanglement entropy and the survival probability which further
evidence the thermalization and its breakdown in the considered model. We
outline a way to experimentally realize the XXZ chain with
linearly-inhomogeneous interactions in systems of ultracold atoms. Our results
highlight a mechanism of emergence of ETH due to insertion of inhomogeneities
in an otherwise integrable system and illustrate the arrest of quantum dynamics
in presence of strong interactions.
Related papers
- Transport and integrability-breaking in non-Hermitian many-body quantum
systems [0.0]
We study the impact of non-unitary dynamics on the emergent hydrodynamics in quantum systems with a global conservation law.
We show how linear-response correlation functions can be generalized and interpreted in the case of non-Hermitian systems.
arXiv Detail & Related papers (2024-03-04T02:26:30Z) - Sunburst quantum Ising model under interaction quench: entanglement and
role of initial state coherence [0.0]
We study the non-equilibrium dynamics of an isolated bipartite quantum system under interaction quench.
We show the importance of the role played by the coherence of the initial state in deciding the nature of thermalization.
arXiv Detail & Related papers (2022-12-23T11:57:47Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Hidden Quantum Criticality and Entanglement in Quench Dynamics [0.0]
Entanglement exhibits universal behavior near the ground-state critical point where correlations are long-ranged and the thermodynamic entropy is vanishing.
A quantum quench imparts extensive energy and results in a build-up of entropy, hence no critical behavior is expected at long times.
We show that quantum criticality is hidden in higher-order correlations and becomes manifest via measures such as the mutual information and logarithmic negativity.
arXiv Detail & Related papers (2022-02-09T19:00:00Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.