CARPe Posterum: A Convolutional Approach for Real-time Pedestrian Path
Prediction
- URL: http://arxiv.org/abs/2005.12469v3
- Date: Wed, 9 Jun 2021 02:36:25 GMT
- Title: CARPe Posterum: A Convolutional Approach for Real-time Pedestrian Path
Prediction
- Authors: Mat\'ias Mendieta and Hamed Tabkhi
- Abstract summary: We propose a convolutional approach for real-time pedestrian path prediction, CARPe.
It utilizes a variation of Graph Isomorphism Networks in combination with an agile convolutional neural network design to form a fast and accurate path prediction approach.
Results in both inference speed and prediction accuracy are achieved, improving FPS considerably in comparison to current state-of-the-art methods.
- Score: 3.883460584034766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian path prediction is an essential topic in computer vision and video
understanding. Having insight into the movement of pedestrians is crucial for
ensuring safe operation in a variety of applications including autonomous
vehicles, social robots, and environmental monitoring. Current works in this
area utilize complex generative or recurrent methods to capture many possible
futures. However, despite the inherent real-time nature of predicting future
paths, little work has been done to explore accurate and computationally
efficient approaches for this task. To this end, we propose a convolutional
approach for real-time pedestrian path prediction, CARPe. It utilizes a
variation of Graph Isomorphism Networks in combination with an agile
convolutional neural network design to form a fast and accurate path prediction
approach. Notable results in both inference speed and prediction accuracy are
achieved, improving FPS considerably in comparison to current state-of-the-art
methods while delivering competitive accuracy on well-known path prediction
datasets.
Related papers
- Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
Trajectory prediction describes the motions of surrounding moving obstacles for an autonomous vehicle.
In this paper, we aim to establish real-time awareness of out-of-distribution in trajectory prediction for autonomous vehicles.
Our solutions are lightweight and can handle the occurrence of out-of-distribution at any time during trajectory prediction inference.
arXiv Detail & Related papers (2024-09-25T18:43:58Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
arXiv Detail & Related papers (2023-09-19T22:14:52Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Graph-based Spatial Transformer with Memory Replay for Multi-future
Pedestrian Trajectory Prediction [13.466380808630188]
We propose a model to forecast multiple paths based on a historical trajectory.
Our method can exploit the spatial information as well as correct the temporally inconsistent trajectories.
Our experiments show that the proposed model achieves state-of-the-art performance on multi-future prediction and competitive results for single-future prediction.
arXiv Detail & Related papers (2022-06-12T10:25:12Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
We propose a novel Graph Convolutional Neural Network (GCNN)-based approach, Attentional-GCNN, which aggregates information of implicit interaction between pedestrians in a crowd by assigning attention weight in edges of the graph.
We show our proposed method achieves an improvement over the state of art by 10% Average Displacement Error (ADE) and 12% Final Displacement Error (FDE) with fast inference speeds.
arXiv Detail & Related papers (2020-11-23T03:13:26Z) - Temporally-Continuous Probabilistic Prediction using Polynomial
Trajectory Parameterization [12.896275507449936]
A commonly-used representation for motion prediction of actors is a sequence of waypoints for each actor at discrete future time-points.
This approach is simple and flexible, but it can exhibit unrealistic higher-order derivatives and approximation errors at intermediate time steps.
We propose a simple and general representation for temporally continuous trajectory prediction that is based on trajectory parameterization.
arXiv Detail & Related papers (2020-11-01T01:51:44Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.