論文の概要: DeepRetinotopy: Predicting the Functional Organization of Human Visual
Cortex from Structural MRI Data using Geometric Deep Learning
- arxiv url: http://arxiv.org/abs/2005.12513v1
- Date: Tue, 26 May 2020 04:54:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 23:46:36.312617
- Title: DeepRetinotopy: Predicting the Functional Organization of Human Visual
Cortex from Structural MRI Data using Geometric Deep Learning
- Title(参考訳): Deep Retinotopy:Geometric Deep Learningを用いた構造MRIデータからヒト視覚皮質の機能的組織予測
- Authors: Fernanda L. Ribeiro, Steffen Bollmann, Alexander M. Puckett
- Abstract要約: 我々は,脳機能と解剖学の複雑な関係を構造的および機能的MRIデータから学習するために,大脳皮質の構造を活用できるディープラーニングモデルを開発した。
我々のモデルは解剖学的特性だけで人間の視覚野の機能的構造を予測することができ、また個人間でのニュアンスの変化を予測することができた。
- 参考スコア(独自算出の注目度): 125.99533416395765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Whether it be in a man-made machine or a biological system, form and function
are often directly related. In the latter, however, this particular
relationship is often unclear due to the intricate nature of biology. Here we
developed a geometric deep learning model capable of exploiting the actual
structure of the cortex to learn the complex relationship between brain
function and anatomy from structural and functional MRI data. Our model was not
only able to predict the functional organization of human visual cortex from
anatomical properties alone, but it was also able to predict nuanced variations
across individuals.
- Abstract(参考訳): 人工機械であれ生物システムであれ、形態や機能は直接的に関連していることが多い。
しかし後者では、生物学の複雑な性質のため、この関係は不明瞭であることが多い。
本研究では,脳の実際の構造を利用して脳機能と解剖学の複雑な関係を構造的および機能的mriデータから学習する幾何深層学習モデルを開発した。
我々のモデルは、解剖学的特性のみから人間の視覚野の機能的構造を予測するだけでなく、個人間のニュアンス変化を予測することもできた。
関連論文リスト
- Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
人間の脳活動から見るイメージを再構築することで、人間とコンピュータのビジョンをBrain-Computer Interfaceを通して橋渡しする。
異なる被験者から得られた機能的磁気共鳴イメージング(fMRI)による画像再構成のための全能モデルであるサイコメトリを考案した。
論文 参考訳(メタデータ) (2024-03-29T07:16:34Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Deep Learning Identifies Neuroimaging Signatures of Alzheimer's Disease
Using Structural and Synthesized Functional MRI Data [8.388888908045406]
脳MRIにおける構造-機能変換を初めて学習することにより,潜在的な解決策を提案する。
次に,大規模構造スキャンから空間整合機能画像を合成する。
時間的ローブは最も予測可能な構造領域であり、パリエト後頭ローブはモデルで最も予測可能な機能領域である。
論文 参考訳(メタデータ) (2021-04-10T03:16:33Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
そこで我々は,アノテーション付きオルガンクラスから一般化されたオルガン概念を学習し,その概念を未知のクラスに転送するOrganNetを提案する。
そこで,OrganNetは臓器形態の幅広い変化に効果的に抵抗でき,一発分節タスクで最先端の結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-30T13:41:12Z) - A Graph Neural Network Framework for Causal Inference in Brain Networks [0.3392372796177108]
神経科学における中心的な問題は、脳内の自律的な動的相互作用が、比較的静的なバックボーンにどのように現れるかである。
構造解剖学的レイアウトに基づく機能的相互作用を記述するグラフニューラルネットワーク(GNN)フレームワークを提案する。
我々は,GNNがデータの長期的依存関係をキャプチャし,大規模ネットワークの解析までスケールアップ可能であることを示す。
論文 参考訳(メタデータ) (2020-10-14T15:01:21Z) - Brain-inspired self-organization with cellular neuromorphic computing
for multimodal unsupervised learning [0.0]
本稿では,自己組織マップとヘビアン様学習を用いた再突入理論に基づく脳刺激型ニューラルシステムを提案する。
システムトポロジがユーザによって固定されるのではなく,自己組織化によって学習されるような,いわゆるハードウェアの可塑性の獲得について述べる。
論文 参考訳(メタデータ) (2020-04-11T21:02:45Z) - Towards a predictive spatio-temporal representation of brain data [0.2580765958706854]
fMRIデータセットは複雑でヘテロジニアスな時系列で構成されていることを示す。
深層学習と幾何学的深層学習の様々なモデリング手法を比較し,今後の研究の道を開く。
私たちは、私たちの方法論の進歩が最終的に、健康と病気の脳のダイナミクスをより微妙に理解することで、臨床的および計算学的に関連があることを期待しています。
論文 参考訳(メタデータ) (2020-02-29T18:49:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。