Coherent Microwave Control of a Nuclear Spin Ensemble at Room
Temperature
- URL: http://arxiv.org/abs/2005.13082v1
- Date: Tue, 26 May 2020 23:29:44 GMT
- Title: Coherent Microwave Control of a Nuclear Spin Ensemble at Room
Temperature
- Authors: P. Huillery, J. Leibold, T. Delord, L. Nicolas, J. Achard, A. Tallaire
and G. H\'etet
- Abstract summary: We demonstrate coherent manipulation of a nuclear spin ensemble using microwave fields at room temperature.
We show that employing an off-axis magnetic field with a modest amplitude is enough to tilt the direction of the electronic spins.
We could then demonstrate fast Rabi oscillations on electron-nuclear spin exchanging transitions, coherent population trapping and polarization of nuclear spin ensembles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We use nominally forbidden electron-nuclear spin transitions in
nitrogen-vacancy (NV) centers in diamond to demonstrate coherent manipulation
of a nuclear spin ensemble using microwave fields at room temperature. We show
that employing an off-axis magnetic field with a modest amplitude($\approx$
0.01 T) at an angle with respect to the NV natural quantization axes is enough
to tilt the direction of the electronic spins, and enable efficient spin
exchange with the nitrogen nuclei of the NV center. We could then demonstrate
fast Rabi oscillations on electron-nuclear spin exchanging transitions,
coherent population trapping and polarization of nuclear spin ensembles in the
microwave regime. Coupling many electronic spins of NV centers to their
intrinsic nuclei offers full scalability with respect to the number of
controllable spins and provides prospects for transduction. In particular, the
technique could be applied to long-lived storage of microwave photons and to
the coupling of nuclear spins to mechanical oscillators in the resolved
sideband regime.
Related papers
- Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Spin-orbit torque on nuclear spins exerted by a spin accumulation via
hyperfine interactions [49.1574468325115]
This article demonstrates that the hyperfine coupling, which consists of Fermi contact and dipolar interactions, can mediate the application of spin-orbit torques acting on nuclear spins.
The reactions to the equilibrium and nonequilibrium components of the spin density is a torque on the nucleus with field-like and damping-like components.
This nuclear spin-orbit torque is a step toward stabilizing and controlling nuclear magnetic momenta, in magnitude and direction, and realizing nuclear spintronics.
arXiv Detail & Related papers (2023-05-21T08:05:23Z) - Preparing highly entangled states of nanodiamond rotation and NV center
spin [0.913755431537592]
A nanodiamond with an embedded nitrogen-vacancy (NV) center is one of the experimental systems that can be coherently manipulated within current technologies.
Entanglement between NV center electron spin and mechanical rotation of the nanodiamond plays a fundamental role in building a network connecting these microscopic and mesoscopic motions.
arXiv Detail & Related papers (2023-05-13T21:17:14Z) - Selective nuclear-spin interaction based on a dissipatively stabilized
nitrogen-vacancy center [0.0]
Current typical methods to realize nuclear-nuclear quantum gates require a sequence of electronnuclear quantum gates.
This limitation could be overcome by using periodical resets of an NV spin as a mediator of interaction between two nuclear spins.
Here we develop this scheme by using radio-frequency (RF) fields to control different nuclear spin species.
arXiv Detail & Related papers (2022-01-05T12:12:36Z) - Tunable Gyromagnetic Augmentation of Nuclear Spins in Diamond [0.0]
This work identifies regimes in which we are able to implement fast quantum control of dark nuclear spins.
It lays the foundations for further inquiry into rapid control of long-lived spin qubits at room temperature.
arXiv Detail & Related papers (2021-09-28T06:14:51Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Nuclear spin readout in a cavity-coupled hybrid quantum dot-donor system [0.0]
Nuclear spins show long coherence times and are well isolated from the environment.
We present a method for nuclear spin readout by probing the transmission of a microwave resonator.
arXiv Detail & Related papers (2020-12-02T16:51:50Z) - Electrical Control of Coherent Spin Rotation of a Single-Spin Qubit [0.0]
Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications.
Here, we report electrical control of the coherent spin rotation rate of a single-spin qubit in NV-magnet based hybrid quantum systems.
arXiv Detail & Related papers (2020-07-15T08:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.