Selective nuclear-spin interaction based on a dissipatively stabilized
nitrogen-vacancy center
- URL: http://arxiv.org/abs/2201.01567v1
- Date: Wed, 5 Jan 2022 12:12:36 GMT
- Title: Selective nuclear-spin interaction based on a dissipatively stabilized
nitrogen-vacancy center
- Authors: Jiawen Jiang and Q. Chen
- Abstract summary: Current typical methods to realize nuclear-nuclear quantum gates require a sequence of electronnuclear quantum gates.
This limitation could be overcome by using periodical resets of an NV spin as a mediator of interaction between two nuclear spins.
Here we develop this scheme by using radio-frequency (RF) fields to control different nuclear spin species.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current typical methods to realize nuclear-nuclear quantum gates require a
sequence of electronnuclear quantum gates by using dynamical decoupling
techniques, which are implemented at low temperature because of short
decoherence and relaxation time of the NV spin at room temperature. This
limitation could be overcome by using periodical resets of an NV spin as a
mediator of interaction between two nuclear spins [Chen, Schwarz, and Plenio,
119, 010801 (2017)]. However, this method works under stringent coupling
strengths condition, which makes it not applicable to heteronuclear quantum
gate operations. Here we develop this scheme by using radio-frequency (RF)
fields to control different nuclear spin species. Periodical resets of the NV
center protect the nuclear spins from decoherence and relaxation of the NV
spin. RF control provides probability to have highly selective and high
fidelity quantum gates between heteronuclear spins as well as detecting nuclear
spins by using a nuclear spin sensor under ambient conditions.
Related papers
- Enhancing Electron-Nuclear Resonances by Dynamical Control Switching [4.52102208934009]
We show that a specific dynamical switching of the electron spin Rabi frequency achieves efficient electron-nuclear coupling.
This protocol has applications in high-field nanoscale nuclear magnetic resonances as well as low-power quantum control of nuclear spins.
arXiv Detail & Related papers (2023-11-17T17:12:47Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Decoupling Nuclear Spins via Interaction-Induced Freezing in Nitrogen
Vacancy Centers in Diamond [0.0]
Nitrogen-Vacancy (NV) centers in diamonds provide a room-temperature platform for emerging quantum technologies.
We demonstrate a freezing protocol for an NV center to isolate its intrinsic nuclear spin from a noisy electromagnetic environment.
arXiv Detail & Related papers (2022-04-08T07:01:51Z) - Tunable Gyromagnetic Augmentation of Nuclear Spins in Diamond [0.0]
This work identifies regimes in which we are able to implement fast quantum control of dark nuclear spins.
It lays the foundations for further inquiry into rapid control of long-lived spin qubits at room temperature.
arXiv Detail & Related papers (2021-09-28T06:14:51Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Parallel selective nuclear spin addressing for fast high-fidelity
quantum gates [5.592842997214522]
Two-qubit gates between nuclear spins of distinct resonance frequencies can be mediated by electron spins.
Here we present a different approach inspired by, but not limited to, NV centers in diamond and discuss possible applications.
arXiv Detail & Related papers (2020-09-03T15:05:02Z) - Coherent Microwave Control of a Nuclear Spin Ensemble at Room
Temperature [0.0]
We demonstrate coherent manipulation of a nuclear spin ensemble using microwave fields at room temperature.
We show that employing an off-axis magnetic field with a modest amplitude is enough to tilt the direction of the electronic spins.
We could then demonstrate fast Rabi oscillations on electron-nuclear spin exchanging transitions, coherent population trapping and polarization of nuclear spin ensembles.
arXiv Detail & Related papers (2020-05-26T23:29:44Z) - Entanglement and control of single quantum memories in isotopically
engineered silicon carbide [89.42372489576658]
Nuclear spins in the solid state are both a cause of decoherence and a valuable resource for spin qubits.
We demonstrate control of isolated 29Si nuclear spins in silicon carbide (SiC) to create an entangled state between an optically active divacancy spin and a strongly coupled nuclear register.
arXiv Detail & Related papers (2020-05-15T15:45:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.