論文の概要: Benchmarking Differential Evolution on a Quantum Simulator
- arxiv url: http://arxiv.org/abs/2311.03128v1
- Date: Mon, 6 Nov 2023 14:27:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 14:12:45.585225
- Title: Benchmarking Differential Evolution on a Quantum Simulator
- Title(参考訳): 量子シミュレータにおける微分進化のベンチマーク
- Authors: Parthasarathy Srinivasan
- Abstract要約: 微分進化(DE)はラストリギン関数やローゼンブロック関数などの関数の最小値を計算するために用いられる。
この研究は、古典的チューリングモデル計算で生成される候補個体を用いて、これらの関数にDE法を適用した結果の研究である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of Evolutionary Algorithms (EA) for solving
Mathematical/Computational Optimization Problems is inspired by the biological
processes of Evolution. Few of the primitives involved in the Evolutionary
process/paradigm are selection of 'Fit' individuals (from a population sample)
for retention, cloning, mutation, discarding, breeding, crossover etc. In the
Evolutionary Algorithm abstraction, the individuals are deemed to be solution
candidates to an Optimization problem and additional solution(/sets) are built
by applying analogies to the above primitives (cloning, mutation etc.) by means
of evaluating a 'Fitness' function/criterion. One such algorithm is
Differential Evolution (DE) which can be used to compute the minima of
functions such as the rastrigin function and rosenbrock function. This work is
an attempt to study the result of applying the DE method on these functions
with candidate individuals generated on classical Turing modeled computation
and comparing the same with those on state of the art Quantum computation.The
study benchmarks the convergence of these functions by varying the parameters
initialized and reports timing, convergence, and resource utilization results.
- Abstract(参考訳): 進化アルゴリズム(EA)を用いた数学的・計算最適化問題の解法は進化の生物学的プロセスに着想を得たものである。
進化過程/パラダイムに関わるプリミティブのいくつかは、保持、クローニング、突然変異、破棄、繁殖、交配などのために(集団サンプルから)「フィット」の個人を選んでいる。
進化的アルゴリズムの抽象化では、個人は最適化問題の解候補と見なされ、上記のプリミティブ(クローニング、突然変異など)に「適合性」関数/基準を評価することによって、追加の解(/セット)が構築される。
そのようなアルゴリズムの一つが微分進化(DE)であり、ラストリギン関数やローゼンブロック関数などの関数のミニマを計算できる。
本研究は,これらの関数にde法を適用し,古典的なチューリングモデルに基づく計算結果と比較した結果を,量子計算の現状と比較し,パラメータを初期化し,タイミング,収束度,資源利用率を報告することにより,これらの関数の収束度をベンチマークする試みである。
関連論文リスト
- Fast Genetic Algorithm for feature selection -- A qualitative approximation approach [5.279268784803583]
本稿では,遺伝的アルゴリズム(GA)を特徴選択に用いることによって生じる計算問題に対処するための,2段階の代理支援進化的アプローチを提案する。
我々はCHCQXがより高速に収束し、特に100K以上のインスタンスを持つ大規模データセットにおいて、非常に高い精度でサブセットソリューションを特徴付けることを示した。
論文 参考訳(メタデータ) (2024-04-05T10:15:24Z) - Frog-Snake prey-predation Relationship Optimization (FSRO) : A novel nature-inspired metaheuristic algorithm for feature selection [0.0]
本研究では,Frog-Snake prey-predation Relationship Optimization (FSRO)アルゴリズムを提案する。
カエルとヘビの捕食関係から着想を得て、離散最適化問題に適用した。
提案アルゴリズムは26種類の機械学習データセットを用いて特徴選択に関する計算実験を行う。
論文 参考訳(メタデータ) (2024-02-13T06:39:15Z) - Comparison of Single- and Multi- Objective Optimization Quality for
Evolutionary Equation Discovery [77.34726150561087]
進化的微分方程式の発見は、より優先順位の低い方程式を得るための道具であることが証明された。
提案した比較手法は、バーガーズ方程式、波動方程式、コルテヴェーグ・ド・ブリーズ方程式といった古典的なモデル例で示される。
論文 参考訳(メタデータ) (2023-06-29T15:37:19Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
本稿では,RNA配列設計に強化学習を適用した新しいベンチマークを提案する。このベンチマークでは,目的関数を配列の二次構造における自由エネルギーとして定義する。
本稿では,これらのアルゴリズムに対して行うアブレーション解析の結果と,バッチ間でのアルゴリズムの性能を示すグラフを示す。
論文 参考訳(メタデータ) (2021-11-05T02:54:06Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z) - Genetic optimization algorithms applied toward mission computability
models [0.3655021726150368]
遺伝的アルゴリズムは計算ベースであり、計算に低コストである。
遺伝的最適化アルゴリズムをミッションクリティカルかつ制約対応の問題に記述する。
論文 参考訳(メタデータ) (2020-05-27T00:45:24Z) - Obtaining Basic Algebra Formulas with Genetic Programming and Functional
Rewriting [0.0]
我々は、関数型プログラミングの書き直しを用いて、帰納的遺伝的プログラミングを促進する。
親はトーナメント選択機構に従って選択され、次の人口は定常的な戦略に従って取得される。
古典的遺伝プログラミングにおける)難題の集合において,本手法の性能を比較した。
論文 参考訳(メタデータ) (2020-05-03T23:32:36Z) - Devolutionary genetic algorithms with application to the minimum
labeling Steiner tree problem [0.0]
本稿では、進化的遺伝的アルゴリズムを特徴付けるとともに、最小ラベル付けスタイナーツリー(MLST)問題を解く際の性能を評価する。
我々は、進化的アルゴリズムを、時間とともに超最適で実現不可能な解の集団を進化させることによって実現可能な解に到達する過程として定義する。
我々は, 交叉, 突然変異, 適合性などの古典的進化的概念が, 最適解, 最適解に到達するためにどのように適応できるかを示す。
論文 参考訳(メタデータ) (2020-04-18T13:27:28Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。