論文の概要: Selective Inference for Latent Block Models
- arxiv url: http://arxiv.org/abs/2005.13273v5
- Date: Sun, 6 Jun 2021 04:38:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 08:10:01.639958
- Title: Selective Inference for Latent Block Models
- Title(参考訳): 潜在ブロックモデルの選択的推論
- Authors: Chihiro Watanabe, Taiji Suzuki
- Abstract要約: 本研究では,潜在ブロックモデルに対する選択的推論法を提案する。
我々は,潜在ブロックモデルの行と列クラスタのメンバシップの集合に対する統計的テストを構築した。
提案された正確で近似されたテストは、選択バイアスを考慮していない単純なテストと比較して効果的に機能する。
- 参考スコア(独自算出の注目度): 50.83356836818667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model selection in latent block models has been a challenging but important
task in the field of statistics. Specifically, a major challenge is encountered
when constructing a test on a block structure obtained by applying a specific
clustering algorithm to a finite size matrix. In this case, it becomes crucial
to consider the selective bias in the block structure, that is, the block
structure is selected from all the possible cluster memberships based on some
criterion by the clustering algorithm. To cope with this problem, this study
provides a selective inference method for latent block models. Specifically, we
construct a statistical test on a set of row and column cluster memberships of
a latent block model, which is given by a squared residue minimization
algorithm. The proposed test, by its nature, includes and thus can also be used
as the test on the set of row and column cluster numbers. We also propose an
approximated version of the test based on simulated annealing to avoid
combinatorial explosion in searching the optimal block structure. The results
show that the proposed exact and approximated tests work effectively, compared
to the naive test that did not take the selective bias into account.
- Abstract(参考訳): 潜在ブロックモデルにおけるモデル選択は、統計学の分野では難しいが重要な課題である。
具体的には、特定のクラスタリングアルゴリズムを有限サイズ行列に適用することにより得られたブロック構造上のテストを構築する際に大きな課題が生じる。
この場合、ブロック構造における選択バイアス、すなわち、クラスタリングアルゴリズムによるいくつかの基準に基づいて、ブロック構造が全ての可能なクラスタメンバシップから選択されることを考えることが重要である。
この問題に対処するため,本研究では潜在ブロックモデルの選択的推論法を提案する。
具体的には,二乗剰余最小化アルゴリズムによって与えられる潜在ブロックモデルの行および列クラスタメンバシップのセット上での統計的テストを構築する。
提案するテストは、その性質上、行と列のクラスタ番号のセットのテストとして使用することも可能である。
また, 最適ブロック構造の探索において組合せ爆発を避けるため, シミュレート・アニーリングに基づく近似版を提案する。
その結果, 選択バイアスを考慮に入れない単純試験と比較して, 提案した精度および近似試験が効果的に動作することがわかった。
関連論文リスト
- Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - High-dimensional variable clustering based on maxima of a weakly dependent random process [1.1999555634662633]
本稿では,Asymptotic Independent Block (AI-block)モデルと呼ばれる,変数クラスタリングのための新しいモデルのクラスを提案する。
このモデルのクラスは特定可能であり、つまり、分割の間に部分的な順序を持つ極大要素が存在し、統計的推測が可能であることを意味する。
また,変数のクラスタを列挙するチューニングパラメータに依存するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-02T08:24:26Z) - clusterBMA: Bayesian model averaging for clustering [1.2021605201770345]
本稿では、教師なしクラスタリングアルゴリズムの結果の重み付きモデル平均化を可能にするクラスタBMAを提案する。
クラスタリング内部検証基準を用いて、各モデルの結果の重み付けに使用される後続モデル確率の近似を開発する。
シミュレーションデータ上での他のアンサンブルクラスタリングメソッドのパフォーマンスに加えて、クラスタBMAは平均クラスタへの確率的アロケーションを含むユニークな機能を提供する。
論文 参考訳(メタデータ) (2022-09-09T04:55:20Z) - Selective inference for k-means clustering [0.0]
k平均クラスタリングを用いて得られた一対のクラスタ間の差分に対する選択型I誤差を制御する有限サンプルp値を提案する。
提案手法をシミュレーションや手書き桁データ,シングルセルRNAシークエンシングデータに適用する。
論文 参考訳(メタデータ) (2022-03-29T06:28:12Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
本稿では,局所凸型ユーザコストを用いた個人化フェデレーション学習のためのアルゴリズム群を提案する。
提案するフレームワークは,異なるユーザのモデルの違いをペナル化する凸クラスタリングの一般化に基づいている。
論文 参考訳(メタデータ) (2022-02-01T19:25:31Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
クラスタリングは教師なし学習における基本的なプリミティブである。
最近の研究は、低次手法のクラスに対する低い境界を確立している。
意外なことに、この特定のクラスタリングモデルのtextitdoesは、統計的-計算的ギャップを示さない。
論文 参考訳(メタデータ) (2021-12-07T18:50:17Z) - Selecting the number of clusters, clustering models, and algorithms. A
unifying approach based on the quadratic discriminant score [0.5330240017302619]
本稿では,多数のクラスタリングソリューションの中から選択可能な選択規則を提案する。
提案手法は,他の最先端手法と比較できない分割を比較できるという特徴的利点を有する。
論文 参考訳(メタデータ) (2021-11-03T15:38:58Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z) - Blocked Clusterwise Regression [0.0]
我々は、各ユニットが複数の潜伏変数を持つことを可能にすることで、離散的非観測的不均一性に対する以前のアプローチを一般化する。
我々は,クラスタの過剰な数のクラスタリングの理論に寄与し,この設定に対する新たな収束率を導出する。
論文 参考訳(メタデータ) (2020-01-29T23:29:31Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。