Studies of thorium and ytterbium ion trap loading from laser ablation
for gravity monitoring with nuclear clocks
- URL: http://arxiv.org/abs/2005.13918v3
- Date: Wed, 29 Jul 2020 10:12:01 GMT
- Title: Studies of thorium and ytterbium ion trap loading from laser ablation
for gravity monitoring with nuclear clocks
- Authors: Marcin Piotrowski, Jordan Scarabel, Mirko Lobino, Erik Streed, and
Stephen Gensemer
- Abstract summary: We aim at a laser ablation loading of single triply ionized thorium in a radio-frequency electromagnetic linear Paul trap.
We successfully created and detected 232Th+ and 232Th2+ ions from plasma plumes, studied their yield evolution, and compared the loading to a quadrupole ion trap with Yb.
The thorium ablation yield shows a strong depletion, suggesting that we have ablated oxide layers from the surface and the ions were a result of the plasma plume evolution and collisions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compact and robust ion traps for thorium are enabling technology for the next
generation of atomic clocks based on a low-energy isomeric transition in the
thorium-229 nucleus. We aim at a laser ablation loading of single triply
ionized thorium in a radio-frequency electromagnetic linear Paul trap.
Detection of ions is based on a modified mass spectrometer and a channeltron
with single-ion sensitivity. In this study, we successfully created and
detected 232Th+ and 232Th2+ ions from plasma plumes, studied their yield
evolution, and compared the loading to a quadrupole ion trap with Yb. We
explore the feasibility of laser ablation loading for future low-cost 229Th3+
trapping. The thorium ablation yield shows a strong depletion, suggesting that
we have ablated oxide layers from the surface and the ions were a result of the
plasma plume evolution and collisions. Our results are in good agreement with
similar experiments for other elements and their oxides.
Related papers
- Absorption Spectroscopy of $^{40}$Ca Atomic Beams Produced via Pulsed Laser Ablation: A Quantitative Comparison of Ca and CaTiO$_3$ Targets [0.0]
We measure the ablation plume longitudinal and transverse temperatures, number density, ion production, and spot lifetime for each target.
We compare the ablated atomic beam density for both targets before and after 21 hours of exposure to atmosphere.
arXiv Detail & Related papers (2024-06-24T21:16:16Z) - Quantum Emitters in Aluminum Nitride Induced by Zirconium Ion
Implantation [70.64959705888512]
This study investigates aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics.
We conduct a comprehensive study of the creation and photophysical properties of single-photon emitters in AlN utilizing Zirconium (Zr) and Krypton (Kr) heavy ion implantation.
With the 532 nm excitation wavelength, we found that single-photon emitters induced by ion implantation are primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions.
arXiv Detail & Related papers (2024-01-26T03:50:33Z) - Ablation loading of barium ions into a surface electrode trap [0.0]
Trapped-ion quantum information processing may benefit from qubits encoded in isotopes that are practically available in only small quantities.
Laser ablation provides a method of controllably liberating neutral atoms or ions from low-volume targets.
Here we investigate ablation-based ion loading into surface-electrode traps of different sizes to test a model describing ion loading probability.
arXiv Detail & Related papers (2023-03-03T18:50:04Z) - Bipolar single-molecule electroluminescence and electrofluorochromism [50.591267188664666]
We investigate cationic and anionic fluorescence of individual zinc phthalocyanine (ZnPc) molecules adsorbed on ultrathin NaCl films on Ag (111) by using STML.
They depend on the tip-sample bias polarity and appear at threshold voltages that are correlated with the onset energies of particular molecular orbitals.
arXiv Detail & Related papers (2022-10-20T09:22:45Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Deterministic loading of a single strontium ion into a surface electrode
trap using pulsed laser ablation [0.0]
Trapped-ion quantum technologies have been developed for decades toward applications such as precision measurement, quantum communication and quantum computation.
We demonstrate an efficient loading of a single strontium ion into a surface electrode trap generated by laser ablation and successive photoionization.
Our results open up a way to develop more functional ion-trap quantum devices by the clean, stable, and deterministic ion loading.
arXiv Detail & Related papers (2021-09-10T16:04:43Z) - High stability cryogenic system for quantum computing with compact
packaged ion traps [0.0]
Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultra-high vacuum (UHV) environment for maintaining long ion chains for extended periods of time.
Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure.
We packaged a surface ion trap in a cryo-package assembly that enables easy handling, while creating a UHV environment for the ions.
arXiv Detail & Related papers (2021-08-11T15:47:33Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Ancilla mediated qubit readout and heralded entanglement between
rare-earth dopant ions in crystals [68.8204255655161]
We show how a Bayesian analysis exhausts the information about the state of the qubit from the optical signal of the ancilla ion.
We extend the architecture to ions residing in two remote cavities, and we show how continuous monitoring of fluorescence signals from the two ancilla ions leads to entanglement of the qubit ions.
arXiv Detail & Related papers (2020-07-06T16:31:46Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z) - Electro-optical ion trap for experiments with atom-ion quantum hybrid
systems [0.0]
atom-ion hybrid systems are characterized by the presence of a new tool in the experimental AMO toolbox: atom-ion interactions.
One of the main limitations in state-of-the-art atom-ion experiments is represented by the micromotion component of the ions' dynamics in a Paul trap.
Here we report the design and the simulation of a novel ion trapping setup especially conceived for the integration with an ultracold atoms experiment.
arXiv Detail & Related papers (2020-01-31T17:31:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.