Deterministic loading of a single strontium ion into a surface electrode
trap using pulsed laser ablation
- URL: http://arxiv.org/abs/2109.04965v1
- Date: Fri, 10 Sep 2021 16:04:43 GMT
- Title: Deterministic loading of a single strontium ion into a surface electrode
trap using pulsed laser ablation
- Authors: Alto Osada and Atsushi Noguchi
- Abstract summary: Trapped-ion quantum technologies have been developed for decades toward applications such as precision measurement, quantum communication and quantum computation.
We demonstrate an efficient loading of a single strontium ion into a surface electrode trap generated by laser ablation and successive photoionization.
Our results open up a way to develop more functional ion-trap quantum devices by the clean, stable, and deterministic ion loading.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trapped-ion quantum technologies have been developed for decades toward
applications such as precision measurement, quantum communication and quantum
computation. Coherent manipulation of ions' oscillatory motions in an ion trap
is important for quantum information processing by ions, however, unwanted
decoherence caused by fluctuating electric-field environment often hinders
stable and high-fidelity operations.. One way to avoid this is to adopt pulsed
laser ablation for ion loading, a loading method with significantly reduced
pollution and heat production. Despite the usefulness of the ablation loading
such as the compatibility with cryogenic environment, randomness of the number
of loaded ions is still problematic in realistic applications where definite
number of ions are preferably loaded with high probability. In this paper, we
demonstrate an efficient loading of a single strontium ion into a surface
electrode trap generated by laser ablation and successive photoionization. The
probability of single-ion loading into a surface electrode trap is measured to
be 82\,\%, and such a deterministic single-ion loading allows for loading ions
into the trap one-by-one. Our results open up a way to develop more functional
ion-trap quantum devices by the clean, stable, and deterministic ion loading.
Related papers
- Quantum Emitters in Aluminum Nitride Induced by Zirconium Ion
Implantation [70.64959705888512]
This study investigates aluminum nitride (AlN) as a material with properties highly suitable for integrated on-chip photonics.
We conduct a comprehensive study of the creation and photophysical properties of single-photon emitters in AlN utilizing Zirconium (Zr) and Krypton (Kr) heavy ion implantation.
With the 532 nm excitation wavelength, we found that single-photon emitters induced by ion implantation are primarily associated with vacancy-type defects in the AlN lattice for both Zr and Kr ions.
arXiv Detail & Related papers (2024-01-26T03:50:33Z) - Photo-induced charge carrier dynamics in a semiconductor-based ion trap
investigated via motion-sensitive qubit transitions [3.90220662841177]
We present a photo-induced charging model for semiconductors, whose verification is enabled by a systematic interaction between trapped ions and photo-induced stray fields.
In contrast to incoherent errors arising from the thermal motion of the ion, coherent errors are induced by the stray field, whose effect is significantly imprinted during the quantum control of the ion.
arXiv Detail & Related papers (2023-11-29T16:19:55Z) - A Novel Quasiparticle Method for Solid State Ion Transport [1.4918456025103544]
The quasiparticle method has achieved a great success in solid state electronics and crystal lattice vibration.
A general recipe is put forward to map the classical solid state ion system together with the short-range ion-ion repulsion to a quasiparticle quantum system.
The derived ionic eigen-states and transport can naturally incorporate the concerted behavior.
arXiv Detail & Related papers (2023-10-22T20:34:13Z) - Graphene-Enhanced Single Ion Detectors for Deterministic Near-Surface
Dopant Implantation in Diamond [45.887393876309375]
Most demanding application for a large-scale quantum computer will require ordered arrays.
By configuring an electronic-grade diamond substrate with a biased surface graphene electrode connected to charge-sensitive electronics, it is possible to demonstrate single ion implantation for ions stopping between 30 and 130nm deep from a typical ion source.
This allows the construction of ordered arrays of single atoms with associated colour centres that paves the way for the fabrication of deterministic colour center networks in a monolithic device.
arXiv Detail & Related papers (2023-06-13T02:16:02Z) - Ablation loading of barium ions into a surface electrode trap [0.0]
Trapped-ion quantum information processing may benefit from qubits encoded in isotopes that are practically available in only small quantities.
Laser ablation provides a method of controllably liberating neutral atoms or ions from low-volume targets.
Here we investigate ablation-based ion loading into surface-electrode traps of different sizes to test a model describing ion loading probability.
arXiv Detail & Related papers (2023-03-03T18:50:04Z) - Near-Surface Electrical Characterisation of Silicon Electronic Devices
Using Focused keV Ions [45.82374977939355]
We show how to implant low-energy ions into silicon devices featuring an enlarged 60x60 $mu$m sensitive area.
Despite the weak internal electric field, near-unity charge collection efficiency is obtained from the entire sensitive area.
This can be explained by the critical role that the high-quality thermal gate oxide plays in the ion detection response.
arXiv Detail & Related papers (2022-01-27T06:29:46Z) - Heating of a trapped ion induced by dielectric materials [1.2495977992702094]
Electric-field noise due to surfaces disturbs the motion of nearby trapped ions.
We present a method that predicts the effect of dielectric materials on the ion's motion.
We expect that this approach can be used to optimize the design of ion-trap-based quantum computers and network nodes.
arXiv Detail & Related papers (2021-03-25T13:52:28Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Trapping, Shaping and Isolating of Ion Coulomb Crystals via
State-selective Optical Potentials [55.41644538483948]
In conventional ion traps, the trapping potential is close to independent of the electronic state, providing confinement for ions dependent on their charge-to-mass ratio $Q/m$.
Here we experimentally study optical dipole potentials for $138mathrmBa+$ ions stored within two distinctive traps operating at 532 nm and 1064 nm.
arXiv Detail & Related papers (2020-10-26T14:36:48Z) - Ancilla mediated qubit readout and heralded entanglement between
rare-earth dopant ions in crystals [68.8204255655161]
We show how a Bayesian analysis exhausts the information about the state of the qubit from the optical signal of the ancilla ion.
We extend the architecture to ions residing in two remote cavities, and we show how continuous monitoring of fluorescence signals from the two ancilla ions leads to entanglement of the qubit ions.
arXiv Detail & Related papers (2020-07-06T16:31:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.