論文の概要: Bipartite Distance for Shape-Aware Landmark Detection in Spinal X-Ray
Images
- arxiv url: http://arxiv.org/abs/2005.14330v1
- Date: Thu, 28 May 2020 22:34:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-27 05:01:47.646741
- Title: Bipartite Distance for Shape-Aware Landmark Detection in Spinal X-Ray
Images
- Title(参考訳): 脊椎X線画像における形状認識ランドマーク検出のための両部距離
- Authors: Abdullah-Al-Zubaer Imran, Chao Huang, Hui Tang, Wei Fan, Kenneth M.C.
Cheung, Michael To, Zhen Qian, Demetri Terzopoulos
- Abstract要約: スコリオーシス(英: Scoliosis)は、脊椎の外側の曲がりを引き起こす先天性疾患である。
脊椎のランドマークの自動検出と局所化によって信頼性を向上させることができる。
両部距離(BPD)測定値に基づく新たな損失を提案し,ランドマーク検出性能を継続的に向上させることを示す。
- 参考スコア(独自算出の注目度): 17.8260780895433
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Scoliosis is a congenital disease that causes lateral curvature in the spine.
Its assessment relies on the identification and localization of vertebrae in
spinal X-ray images, conventionally via tedious and time-consuming manual
radiographic procedures that are prone to subjectivity and observational
variability. Reliability can be improved through the automatic detection and
localization of spinal landmarks. To guide a CNN in the learning of spinal
shape while detecting landmarks in X-ray images, we propose a novel loss based
on a bipartite distance (BPD) measure, and show that it consistently improves
landmark detection performance.
- Abstract(参考訳): スコリシス(scoliosis)は、脊椎の外側の湾曲を引き起こす先天性疾患である。
その評価は脊髄x線画像における椎骨の同定と局在に依存しており、従来は、主観的および観察的変動しやすい、退屈で時間のかかる手作業によるx線撮影手順によって行われる。
脊髄ランドマークの自動検出と局在化により、信頼性が向上する。
x線画像中のランドマークを検知しながら、cnnを脊髄形状の学習に導くために、二成分距離(bpd)尺度に基づく新たな損失を提案し、ランドマーク検出性能を一貫して向上させることを示す。
関連論文リスト
- Scoliosis Detection using Deep Neural Network [0.0]
脊柱側方屈曲症は若年層で診断されることが多い。
現在, 脊柱前方X線像を手動で観察し, 頭蓋狭窄を推定する金の基準となっている。
深層学習は、自動脊椎曲率推定において驚くべき成果を上げている。
論文 参考訳(メタデータ) (2022-10-31T12:52:04Z) - Context-Aware Transformers For Spinal Cancer Detection and Radiological
Grading [70.04389979779195]
本稿では,脊椎分析に関わる医療画像問題に対するトランスフォーマーを用いた新しいモデルアーキテクチャを提案する。
MR画像におけるそのようなモデルの2つの応用について考察する: (a)脊椎転移の検出と脊椎骨折の関連状況と転移性脊髄圧迫。
画像中の脊椎のコンテキストを考慮することで,SCTは以前に公表したモデルと比較して,いくつかのグレーディングの精度を向上することを示す。
論文 参考訳(メタデータ) (2022-06-27T10:31:03Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
無線画像からの異常検出のための空間認識型メモリキューを提案する(略してSQUID)。
SQUIDは, 微細な解剖学的構造を逐次パターンに分類でき, 推測では画像中の異常(見えない/修正されたパターン)を識別できる。
論文 参考訳(メタデータ) (2021-11-26T13:47:34Z) - SpineOne: A One-Stage Detection Framework for Degenerative Discs and
Vertebrae [54.751251046196494]
SpineOneと呼ばれる一段階検出フレームワークを提案し、MRIスライスから変性椎骨と椎骨を同時に局在化・分類する。
1)キーポイントの局所化と分類を促進するためのキーポイント・ヒートマップの新しい設計、2)ディスクと脊椎の表現をよりよく区別するためのアテンション・モジュールの使用、3)後期訓練段階における複数の学習目標を関連付けるための新しい勾配誘導客観的アソシエーション機構。
論文 参考訳(メタデータ) (2021-10-28T12:59:06Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Stacked Hourglass Network with a Multi-level Attention Mechanism: Where
to Look for Intervertebral Disc Labeling [2.3848738964230023]
椎間板の位置と骨格構造を協調的に学習する多レベルアテンション機構を有する重畳時間ガラスネットワークを提案する。
提案した深層学習モデルは意味的セグメンテーションの強さとポーズ推定手法を考慮し,欠落した領域と偽陽性検出を扱う。
論文 参考訳(メタデータ) (2021-08-14T14:53:27Z) - A Convolutional Approach to Vertebrae Detection and Labelling in Whole
Spine MRI [70.04389979779195]
脊椎MRIにおける脊椎の発見と同定のための新しい畳み込み法を提案する。
これには学習ベクトル場を使用して、検出された脊椎の角を個別の脊椎にまとめる。
本手法の臨床的有用性を示すために, 腰部, 脊柱管内MRスキャンにおける側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側方側
論文 参考訳(メタデータ) (2020-07-06T09:37:12Z) - Analysis of Scoliosis From Spinal X-Ray Images [17.8260780895433]
脊柱管の計測には脊椎のラベル付けと識別が必要である。
スコリオーシス(英: Scoliosis)は、脊椎が正常な形状から変形する先天性疾患である。
そこで本研究では,脊柱管狭窄計測に伴う脊椎の完全自動的,信頼性の高いセグメンテーションを提供するエンドツーエンドセグメンテーションモデルを提案する。
論文 参考訳(メタデータ) (2020-04-15T05:36:28Z) - Vertebra-Focused Landmark Detection for Scoliosis Assessment [54.24477530836629]
脊椎に焦点をあてた新しいランドマーク検出法を提案する。
我々のモデルはまず椎骨中心を局在させ、そこから学習されたコーナーオフセットを通して椎骨の4つの角のランドマークを辿る。
その結果,低コントラストおよび無明度X線画像におけるコブ角測定とランドマーク検出の両面での有用性が示された。
論文 参考訳(メタデータ) (2020-01-09T19:17:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。