論文の概要: Bayesian network structure learning with causal effects in the presence
of latent variables
- arxiv url: http://arxiv.org/abs/2005.14381v2
- Date: Tue, 18 Aug 2020 06:17:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 22:38:13.403431
- Title: Bayesian network structure learning with causal effects in the presence
of latent variables
- Title(参考訳): 潜伏変数存在下での因果効果を考慮したベイズネットワーク構造学習
- Authors: Kiattikun Chobtham, Anthony C. Constantinou
- Abstract要約: 本稿では,cFCIの制約に基づく部分とスコアに基づく学習を組み合わせた,CCHMと呼ばれるハイブリッド構造学習アルゴリズムについて述べる。
ランダム化されたネットワークとよく知られたネットワークの両方に基づく実験により、CCHMは真の祖先グラフの再構築の観点から最先端の改善を図っている。
- 参考スコア(独自算出の注目度): 6.85316573653194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Latent variables may lead to spurious relationships that can be
misinterpreted as causal relationships. In Bayesian Networks (BNs), this
challenge is known as learning under causal insufficiency. Structure learning
algorithms that assume causal insufficiency tend to reconstruct the ancestral
graph of a BN, where bi-directed edges represent confounding and directed edges
represent direct or ancestral relationships. This paper describes a hybrid
structure learning algorithm, called CCHM, which combines the constraint-based
part of cFCI with hill-climbing score-based learning. The score-based process
incorporates Pearl s do-calculus to measure causal effects and orientate edges
that would otherwise remain undirected, under the assumption the BN is a linear
Structure Equation Model where data follow a multivariate Gaussian
distribution. Experiments based on both randomised and well-known networks show
that CCHM improves the state-of-the-art in terms of reconstructing the true
ancestral graph.
- Abstract(参考訳): 潜伏変数は因果関係と誤解される可能性のある急激な関係をもたらす可能性がある。
ベイズネットワーク (BNs) では、この課題は因果不全下での学習として知られている。
因果的不足を仮定する構造学習アルゴリズムは、二方向辺が結合を表し、有向辺が直接的または祖先的関係を表すbnの祖先グラフを再構成する傾向がある。
本稿では,cFCIの制約ベース部分とヒルクライミングスコアベース学習を組み合わせた,CCHMと呼ばれるハイブリッド構造学習アルゴリズムについて述べる。
スコアベースのプロセスはパール s do-calculus を組み込んで因果効果を測り、そうでなければ無向的なエッジを向き付け、BN は多変量ガウス分布に従う線形構造方程式モデルであると仮定する。
ランダム化されたネットワークとよく知られたネットワークをベースとした実験により、CCHMは真の祖先グラフの再構築の観点から最先端の改善を図っている。
関連論文リスト
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Consistency of Neural Causal Partial Identification [17.503562318576414]
因果モデル(Causal Models)の最近の進歩は、因果効果の同定と部分的同定が神経生成モデルによって自動的に行われるかを示した。
連続変数とカテゴリー変数の両方を持つ一般設定において、NCMによる部分的識別の整合性を証明する。
結果は、深さと接続性の観点から、基盤となるニューラルネットワークアーキテクチャの設計の影響を強調している。
論文 参考訳(メタデータ) (2024-05-24T16:12:39Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - DynGFN: Towards Bayesian Inference of Gene Regulatory Networks with
GFlowNets [81.75973217676986]
遺伝子調節ネットワーク(GRN)は、遺伝子発現と細胞機能を制御する遺伝子とその産物間の相互作用を記述する。
既存の方法は、チャレンジ(1)、ダイナミックスから循環構造を識別すること、あるいはチャレンジ(2)、DAGよりも複雑なベイズ後部を学習することに焦点を当てるが、両方ではない。
本稿では、RNAベロシティ技術を用いて遺伝子発現の「速度」を推定できるという事実を活用し、両方の課題に対処するアプローチを開発する。
論文 参考訳(メタデータ) (2023-02-08T16:36:40Z) - Structure Learning and Parameter Estimation for Graphical Models via
Penalized Maximum Likelihood Methods [0.0]
論文では、静的なベイジアンネットワーク(BN)と、その名前が示すように時間成分を持つ連続時間ベイジアンネットワークという2つの異なるタイプのPGMについて考察する。
私たちは、PGMを学ぶための最初のステップである、真の構造を回復することに興味を持っています。
論文 参考訳(メタデータ) (2023-01-30T20:26:13Z) - Hybrid Bayesian network discovery with latent variables by scoring
multiple interventions [5.994412766684843]
離散データから構造学習を行うためのハイブリッドmFGS-BSアルゴリズムを提案する。
このアルゴリズムは潜伏変数の存在下で因果不整合を仮定し、部分アンセストラルグラフ(PAG)を生成する。
実験の結果,mFGS-BSは最先端技術と比較して構造学習精度が向上し,計算効率が向上した。
論文 参考訳(メタデータ) (2021-12-20T14:54:41Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Structure Learning for Directed Trees [3.1523578265982235]
システムの因果構造を知ることは、科学の多くの分野において基本的な関心事であり、システムの操作下でうまく機能する予測アルゴリズムの設計を支援することができる。
データから構造を学習するために、スコアベースの手法は適合の質に応じて異なるグラフを評価する。
大きな非線形モデルでは、これらは真の因果構造を回復する一般的な保証のない最適化アプローチに依存している。
論文 参考訳(メタデータ) (2021-08-19T18:38:30Z) - Prequential MDL for Causal Structure Learning with Neural Networks [9.669269791955012]
ベイジアンネットワークの実用的スコアリング関数を導出するために,事前最小記述長の原理が利用できることを示す。
我々は、調整しなければならない事前やその他の正規化子を誘導するスパーシリティに頼ることなく、可塑性および擬似グラフ構造を得る。
本研究は, 適応速度から因果構造を推定する最近の研究と, 分布変化の源泉から観測結果が得られた場合の因果構造との関係について考察する。
論文 参考訳(メタデータ) (2021-07-02T22:35:21Z) - Causal Expectation-Maximisation [70.45873402967297]
ポリツリーグラフを特徴とするモデルにおいても因果推論はNPハードであることを示す。
我々は因果EMアルゴリズムを導入し、分類的表現変数のデータから潜伏変数の不確かさを再構築する。
我々は、反事実境界が構造方程式の知識なしにしばしば計算できるというトレンドのアイデアには、目立たずの制限があるように思える。
論文 参考訳(メタデータ) (2020-11-04T10:25:13Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。