論文の概要: Prequential MDL for Causal Structure Learning with Neural Networks
- arxiv url: http://arxiv.org/abs/2107.05481v1
- Date: Fri, 2 Jul 2021 22:35:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-18 12:25:43.184578
- Title: Prequential MDL for Causal Structure Learning with Neural Networks
- Title(参考訳): ニューラルネットワークを用いた因果構造学習のための逐次MDL
- Authors: Jorg Bornschein and Silvia Chiappa and Alan Malek and Rosemary Nan Ke
- Abstract要約: ベイジアンネットワークの実用的スコアリング関数を導出するために,事前最小記述長の原理が利用できることを示す。
我々は、調整しなければならない事前やその他の正規化子を誘導するスパーシリティに頼ることなく、可塑性および擬似グラフ構造を得る。
本研究は, 適応速度から因果構造を推定する最近の研究と, 分布変化の源泉から観測結果が得られた場合の因果構造との関係について考察する。
- 参考スコア(独自算出の注目度): 9.669269791955012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning the structure of Bayesian networks and causal relationships from
observations is a common goal in several areas of science and technology. We
show that the prequential minimum description length principle (MDL) can be
used to derive a practical scoring function for Bayesian networks when flexible
and overparametrized neural networks are used to model the conditional
probability distributions between observed variables. MDL represents an
embodiment of Occam's Razor and we obtain plausible and parsimonious graph
structures without relying on sparsity inducing priors or other regularizers
which must be tuned. Empirically we demonstrate competitive results on
synthetic and real-world data. The score often recovers the correct structure
even in the presence of strongly nonlinear relationships between variables; a
scenario were prior approaches struggle and usually fail. Furthermore we
discuss how the the prequential score relates to recent work that infers causal
structure from the speed of adaptation when the observations come from a source
undergoing distributional shift.
- Abstract(参考訳): ベイジアンネットワークの構造と観測から因果関係を学習することは、科学と技術のいくつかの分野において共通の目標である。
本稿では,適応性および過度にパラメータ化されたニューラルネットワークを用いて観測変数間の条件付き確率分布をモデル化した場合に,事前最小記述長原理(MDL)を用いてベイズネットワークの実用的なスコアリング関数を導出できることを示す。
MDL は Occam の Razor の具現化を表現し, 調整が必要な前処理やその他の正則化器を疎結合にすることなく, 可塑性および同相グラフ構造を得る。
人工的および実世界のデータに競合する結果を実証する。
スコアはしばしば変数間の強い非線形関係が存在する場合でも正しい構造を回復する。
さらに, 分布シフト中の音源から観測を行った場合, 適応速度から因果構造を推定する最近の研究との関係についても考察した。
関連論文リスト
- Learning local discrete features in explainable-by-design convolutional neural networks [0.0]
本稿では,側方抑制機構に基づくCNN(Design-by-Design Convolutional Neural Network)を提案する。
このモデルは、残留または高密度のスキップ接続を持つ高精度CNNである予測器で構成されている。
観測を収集し,直接確率を計算することにより,隣接するレベルのモチーフ間の因果関係を説明することができる。
論文 参考訳(メタデータ) (2024-10-31T18:39:41Z) - DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
グラフニューラルネットワーク(GNN)は、分散シフトの影響を受けやすいため、クリティカルドメインの脆弱性やセキュリティ上の問題が発生する。
不変(機能、構造)-ラベルマッピングの学習を目標とする既存の方法は、データ生成プロセスに関する過度に単純化された仮定に依存することが多い。
構造因果モデル(SCM)を用いたより現実的なグラフデータ生成モデルを提案する。
本稿では,非バイアスな特徴ラベルと構造ラベルのマッピングを独立に学習する,カジュアルなデカップリングフレームワークDeCafを提案する。
論文 参考訳(メタデータ) (2024-10-27T00:22:18Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Interpretable Additive Recurrent Neural Networks For Multivariate
Clinical Time Series [4.125698836261585]
本稿では,モデル内の変数間の関係を加法的に強制することで,モデルの複雑性と精度のバランスをとるInterpretable-RNN(I-RNN)を提案する。
I-RNNは、時間内に不均一にサンプリングされ、非同期に取得され、データが欠落している臨床時系列の特徴を特に捉えている。
本研究は,院内死亡率予測のためのPhysoronet 2012 ChallengeデータセットのI-RNNモデルと,集中治療室における血行動態の介入を予測するリアルな臨床診断支援タスクについて評価する。
論文 参考訳(メタデータ) (2021-09-15T22:30:19Z) - Relating Graph Neural Networks to Structural Causal Models [17.276657786213015]
因果関係は、興味のある変数とその力学関係に関する情報を伝達する構造因果モデル(SCM)によって記述することができる。
本稿では,GNNとSCMの新たな接続を確立する理論解析について述べる。
次に、GNNに基づく因果推論のための新しいモデルクラスを構築し、因果効果の同定に十分である。
論文 参考訳(メタデータ) (2021-09-09T11:16:31Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。