論文の概要: First Neural Conjecturing Datasets and Experiments
- arxiv url: http://arxiv.org/abs/2005.14664v1
- Date: Fri, 29 May 2020 16:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 22:38:49.398616
- Title: First Neural Conjecturing Datasets and Experiments
- Title(参考訳): 第1回 ニューラル・コンジェクション・データセットと実験
- Authors: Josef Urban and Jan Jakub\r{u}v
- Abstract要約: いくつかのデータセットと、ニューラルネットワークによる予測を作成するための最初の実験について述べる。
これらのデータセットは、いくつかの形式で処理されたMizar Mathematical Libraryと、MPTPシステムによって抽出された問題に基づいており、E証明者によって証明されている。
導出実験では Transformer アーキテクチャ、特に GPT-2 の実装が使用されている。
- 参考スコア(独自算出の注目度): 0.7614628596146599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe several datasets and first experiments with creating conjectures
by neural methods. The datasets are based on the Mizar Mathematical Library
processed in several forms and the problems extracted from it by the MPTP
system and proved by the E prover using the ENIGMA guidance. The conjecturing
experiments use the Transformer architecture and in particular its GPT-2
implementation.
- Abstract(参考訳): いくつかのデータセットと、ニューラルネットワークによる予測を作成するための最初の実験について述べる。
データセットは、いくつかの形式で処理されたMizar Mathematical Libraryと、MPTPシステムによって抽出された問題に基づいており、ENIGMAガイダンスを用いてE証明者によって証明されている。
導出実験では Transformer アーキテクチャ、特に GPT-2 の実装が使用されている。
関連論文リスト
- Not All Samples Should Be Utilized Equally: Towards Understanding and Improving Dataset Distillation [57.6797306341115]
我々は,サンプル難易度の観点から,マッチングに基づくDD手法の理解に向けて最初の一歩を踏み出した。
次に、データプルーニングのニューラルネットワークスケーリング法則をDDに拡張し、これらのマッチングベースの手法を理論的に説明する。
SDC(Sampple Difficulty Correction)アプローチを導入し、より簡単なサンプルを生成して、より高いデータセット品質を実現する。
論文 参考訳(メタデータ) (2024-08-22T15:20:32Z) - Differentially Private Tabular Data Synthesis using Large Language Models [6.6376578496141585]
本稿ではDP-LLMTGenについて紹介する。
DP-LLMTGenは、2段階の微調整手順を用いて、センシティブなデータセットをモデル化する。
微調整LDMをサンプリングすることで合成データを生成する。
論文 参考訳(メタデータ) (2024-06-03T15:43:57Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - A robust synthetic data generation framework for machine learning in
High-Resolution Transmission Electron Microscopy (HRTEM) [1.0923877073891446]
Construction Zoneは、複雑なナノスケール原子構造を高速に生成するためのPythonパッケージである。
ニューラルネットワークをトレーニングするための大規模なシミュレーションデータベースを作成するためのエンドツーエンドワークフローを開発する。
この結果から, ナノ粒子のHRTEM画像に対して, 最先端のセグメンテーション性能を実現することができた。
論文 参考訳(メタデータ) (2023-09-12T10:44:15Z) - Constructing coarse-scale bifurcation diagrams from spatio-temporal
observations of microscopic simulations: A parsimonious machine learning
approach [0.0]
本稿では,粗粒度分岐図構築のための3層計算手法を提案する。
学習多様体、特にパリモニアス写像を利用して、多様体の内在次元を同定する。
2つの機械学習スキームを用いて実効偏微分方程式(PDE)の右辺を学習する。
論文 参考訳(メタデータ) (2022-01-31T16:21:31Z) - Cognitive simulation models for inertial confinement fusion: Combining
simulation and experimental data [0.0]
研究者は、高性能な爆発を求めて設計空間を探索するためにコンピュータシミュレーションに大きく依存しています。
より効果的な設計と調査のために、シミュレーションは過去の実験データからの入力を必要とする。
本稿では,シミュレーションと実験データを共通の予測モデルに組み合わせた認知シミュレーション手法について述べる。
論文 参考訳(メタデータ) (2021-03-19T02:00:14Z) - Data Augmentation for Abstractive Query-Focused Multi-Document
Summarization [129.96147867496205]
2つのQMDSトレーニングデータセットを提示し,2つのデータ拡張手法を用いて構築する。
これらの2つのデータセットは相補的な性質を持ち、すなわちQMDSCNNは実際のサマリを持つが、クエリはシミュレートされる。
組み合わせたデータセット上にエンドツーエンドのニューラルネットワークモデルを構築し、DUCデータセットに最新の転送結果をもたらします。
論文 参考訳(メタデータ) (2021-03-02T16:57:01Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - A study of traits that affect learnability in GANs [0.0]
Generative Adversarial Networks GANは、2つのニューラルネットワークを使用するアルゴリズムアーキテクチャである。
本稿では,パラメータ化合成データセットを用いて実験実験を行い,学習性に影響を与える特性について検討する。
論文 参考訳(メタデータ) (2020-11-27T13:31:37Z) - Two-Dimensional Semi-Nonnegative Matrix Factorization for Clustering [50.43424130281065]
TS-NMFと呼ばれる2次元(2次元)データに対する新しい半負行列分解法を提案する。
前処理ステップで2次元データをベクトルに変換することで、データの空間情報に深刻なダメージを与える既存の手法の欠点を克服する。
論文 参考訳(メタデータ) (2020-05-19T05:54:14Z) - Deep transfer learning for improving single-EEG arousal detection [63.52264764099532]
2つのデータセットは、単一のEEGモデルでパフォーマンスが低下する原因となる、まったく同じ設定を含んでいない。
単チャンネル脳波データのためのアーキテクチャを構築するために,ベースラインモデルをトレーニングし,最初の2層を置き換える。
細調整戦略を用いて,本モデルはベースラインモデルと同等の性能を示し,同等の単一チャネルモデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-10T16:51:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。