Anatomical Predictions using Subject-Specific Medical Data
- URL: http://arxiv.org/abs/2006.00090v1
- Date: Fri, 29 May 2020 21:30:46 GMT
- Title: Anatomical Predictions using Subject-Specific Medical Data
- Authors: Marianne Rakic, John Guttag and Adrian V. Dalca
- Abstract summary: We present a method that predicts how a brain MRI for an individual will change over time.
Given a predicted deformation field, a baseline scan can be warped to give a prediction of the brain scan at a future time.
- Score: 7.635279671482444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Changes over time in brain anatomy can provide important insight for
treatment design or scientific analyses. We present a method that predicts how
a brain MRI for an individual will change over time. We model changes using a
diffeomorphic deformation field that we predict using function using
convolutional neural networks. Given a predicted deformation field, a baseline
scan can be warped to give a prediction of the brain scan at a future time. We
demonstrate the method using the ADNI cohort, and analyze how performance is
affected by model variants and the subject-specific information provided. We
show that the model provides good predictions and that external clinical data
can improve predictions.
Related papers
- A Lightweight Generative Model for Interpretable Subject-level Prediction [0.07989135005592125]
We propose a technique for single-subject prediction that is inherently interpretable.
Experiments demonstrate that the resulting model can be efficiently inverted to make accurate subject-level predictions.
arXiv Detail & Related papers (2023-06-19T18:20:29Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Pseudo-domains in imaging data improve prediction of future disease
status in multi-center studies [57.712855968194305]
We propose a prediction method that can cope with a high number of different scanning sites and a low number of samples per site.
Results show that they improve the prediction accuracy for steatosis after 48 weeks from imaging data acquired at an initial visit and 12-weeks follow-up in liver disease.
arXiv Detail & Related papers (2021-11-15T09:40:54Z) - Learning to Predict with Supporting Evidence: Applications to Clinical
Risk Prediction [9.199022926064009]
The impact of machine learning models on healthcare will depend on the degree of trust that healthcare professionals place in the predictions made by these models.
We present a method to provide people with clinical expertise with domain-relevant evidence about why a prediction should be trusted.
arXiv Detail & Related papers (2021-03-04T00:26:32Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Using StyleGAN for Visual Interpretability of Deep Learning Models on
Medical Images [0.7874708385247352]
We propose a new interpretability method that can be used to understand the predictions of any black-box model on images.
A StyleGAN is trained on medical images to provide a mapping between latent vectors and images.
By shifting the latent representation of an input image along this direction, we can produce a series of new synthetic images with changed predictions.
arXiv Detail & Related papers (2021-01-19T11:13:20Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event.
Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset.
We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects.
arXiv Detail & Related papers (2020-11-18T23:13:48Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Predictive Modeling of Anatomy with Genetic and Clinical Data [18.062331119075928]
We present a semi-parametric generative model for predicting anatomy of a patient in subsequent scans following a single baseline image.
We capture anatomical change through a combination of population-wide regression and a non-parametric model of the subject's health based on individual genetic and clinical indicators.
arXiv Detail & Related papers (2020-10-09T18:30:15Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.