Pseudo-domains in imaging data improve prediction of future disease
status in multi-center studies
- URL: http://arxiv.org/abs/2111.07634v1
- Date: Mon, 15 Nov 2021 09:40:54 GMT
- Title: Pseudo-domains in imaging data improve prediction of future disease
status in multi-center studies
- Authors: Matthias Perkonigg, Peter Mesenbrink, Alexander Goehler, Miljen
Martic, Ahmed Ba-Ssalamah, Georg Langs
- Abstract summary: We propose a prediction method that can cope with a high number of different scanning sites and a low number of samples per site.
Results show that they improve the prediction accuracy for steatosis after 48 weeks from imaging data acquired at an initial visit and 12-weeks follow-up in liver disease.
- Score: 57.712855968194305
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-center randomized clinical trials imaging data can be diverse due to
acquisition technology or scanning protocols. Models predicting future outcome
of patients are impaired by this data heterogeneity. Here, we propose a
prediction method that can cope with a high number of different scanning sites
and a low number of samples per site. We cluster sites into pseudo-domains
based on visual appearance of scans, and train pseudo-domain specific models.
Results show that they improve the prediction accuracy for steatosis after 48
weeks from imaging data acquired at an initial visit and 12-weeks follow-up in
liver disease
Related papers
- Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
Medical image datasets are essential for training models used in computer-aided diagnosis, treatment planning, and medical research.
Some challenges are associated with these datasets, including variability in data distribution, data scarcity, and transfer learning issues when using models pre-trained from generic images.
We propose a methodology based on Siamese neural networks in which a series of techniques are integrated to mitigate the effects of data scarcity and distribution imbalance.
arXiv Detail & Related papers (2024-01-18T16:59:27Z) - Treatment Outcome Prediction for Intracerebral Hemorrhage via Generative
Prognostic Model with Imaging and Tabular Data [18.87414111429906]
Intracerebral hemorrhage is the second most common and deadliest form of stroke.
Despite medical advances, predicting treat ment outcomes for ICH remains a challenge.
Model is trained on observational data collected from non-randomized controlled trials.
arXiv Detail & Related papers (2023-07-24T14:57:40Z) - Realistic Data Enrichment for Robust Image Segmentation in
Histopathology [2.248423960136122]
We propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups.
Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines.
arXiv Detail & Related papers (2023-04-19T09:52:50Z) - Multi-Label Retinal Disease Classification using Transformers [0.0]
A new multi-label retinal disease dataset, MuReD, is constructed, using a number of publicly available datasets for fundus disease classification.
A transformer-based model optimized through extensive experimentation is used for image analysis and decision making.
It is shown that the approach performs better than state-of-the-art works on the same task by 7.9% and 8.1% in terms of AUC score for disease detection and disease classification.
arXiv Detail & Related papers (2022-07-05T22:06:52Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Edge-variational Graph Convolutional Networks for Uncertainty-aware
Disease Prediction [7.6146285961466]
We propose a generalizable framework that can automatically integrate imaging data with non-imaging data in populations for uncertainty-aware disease prediction.
Experimental results on four databases show that our method can consistently and significantly improve the diagnostic accuracy for Autism spectrum disorder, Alzheimer's disease, and ocular diseases.
arXiv Detail & Related papers (2020-09-06T15:53:17Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z) - Progressive Adversarial Semantic Segmentation [11.323677925193438]
Deep convolutional neural networks can perform exceedingly well given full supervision.
The success of such fully-supervised models for various image analysis tasks is limited to the availability of massive amounts of labeled data.
We propose a novel end-to-end medical image segmentation model, namely Progressive Adrial Semantic (PASS)
arXiv Detail & Related papers (2020-05-08T22:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.