Faster object tracking pipeline for real time tracking
- URL: http://arxiv.org/abs/2011.03910v1
- Date: Sun, 8 Nov 2020 06:33:48 GMT
- Title: Faster object tracking pipeline for real time tracking
- Authors: Parthesh Soni, Falak Shah, Nisarg Vyas
- Abstract summary: Multi-object tracking (MOT) is a challenging practical problem for vision based applications.
This paper showcases a generic pipeline which can be used to speed up detection based object tracking methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-object tracking (MOT) is a challenging practical problem for vision
based applications. Most recent approaches for MOT use precomputed detections
from models such as Faster RCNN, performing fine-tuning of bounding boxes and
association in subsequent phases. However, this is not suitable for actual
industrial applications due to unavailability of detections upfront. In their
recent work, Wang et al. proposed a tracking pipeline that uses a Joint
detection and embedding model and performs target localization and association
in realtime. Upon investigating the tracking by detection paradigm, we find
that the tracking pipeline can be made faster by performing localization and
association tasks parallely with model prediction. This, and other
computational optimizations such as using mixed precision model and performing
batchwise detection result in a speed-up of the tracking pipeline by 57.8\% (19
FPS to 30 FPS) on FullHD resolution. Moreover, the speed is independent of the
object density in image sequence. The main contribution of this paper is
showcasing a generic pipeline which can be used to speed up detection based
object tracking methods. We also reviewed different batch sizes for optimal
performance, taking into consideration GPU memory usage and speed.
Related papers
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
Joint Detection and Embedding (JDE) trackers have demonstrated excellent performance in Multi-Object Tracking (MOT) tasks.
Our tracker, named TCBTrack, achieves state-of-the-art performance on multiple public benchmarks.
arXiv Detail & Related papers (2024-07-19T07:48:45Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Multi-Object Tracking by Iteratively Associating Detections with Uniform
Appearance for Trawl-Based Fishing Bycatch Monitoring [22.228127377617028]
The aim of in-trawl catch monitoring for use in fishing operations is to detect, track and classify fish targets in real-time from video footage.
We propose a novel MOT method, built upon an existing observation-centric tracking algorithm, by adopting a new iterative association step.
Our method offers improved performance in tracking targets with uniform appearance and outperforms state-of-the-art techniques on our underwater fish datasets as well as the MOT17 dataset.
arXiv Detail & Related papers (2023-04-10T18:55:10Z) - ETAD: A Unified Framework for Efficient Temporal Action Detection [70.21104995731085]
Untrimmed video understanding such as temporal action detection (TAD) often suffers from the pain of huge demand for computing resources.
We build a unified framework for efficient end-to-end temporal action detection (ETAD)
ETAD achieves state-of-the-art performance on both THUMOS-14 and ActivityNet-1.3.
arXiv Detail & Related papers (2022-05-14T21:16:21Z) - Joint Feature Learning and Relation Modeling for Tracking: A One-Stream
Framework [76.70603443624012]
We propose a novel one-stream tracking (OSTrack) framework that unifies feature learning and relation modeling.
In this way, discriminative target-oriented features can be dynamically extracted by mutual guidance.
OSTrack achieves state-of-the-art performance on multiple benchmarks, in particular, it shows impressive results on the one-shot tracking benchmark GOT-10k.
arXiv Detail & Related papers (2022-03-22T18:37:11Z) - DSRRTracker: Dynamic Search Region Refinement for Attention-based
Siamese Multi-Object Tracking [13.104037155691644]
We propose an end-to-end MOT method, with a Gaussian filter-inspired dynamic search region refinement module.
Our method can achieve the state-of-the-art performance with reasonable speed.
arXiv Detail & Related papers (2022-03-21T04:14:06Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Learning Spatio-Temporal Transformer for Visual Tracking [108.11680070733598]
We present a new tracking architecture with an encoder-decoder transformer as the key component.
The whole method is end-to-end, does not need any postprocessing steps such as cosine window and bounding box smoothing.
The proposed tracker achieves state-of-the-art performance on five challenging short-term and long-term benchmarks, while running real-time speed, being 6x faster than Siam R-CNN.
arXiv Detail & Related papers (2021-03-31T15:19:19Z) - TDIOT: Target-driven Inference for Deep Video Object Tracking [0.2457872341625575]
In this work, we adopt the pre-trained Mask R-CNN deep object detector as the baseline.
We introduce a novel inference architecture placed on top of FPN-ResNet101 backbone of Mask R-CNN to jointly perform detection and tracking.
The proposed single object tracker, TDIOT, applies an appearance similarity-based temporal matching for data association.
arXiv Detail & Related papers (2021-03-19T20:45:06Z) - EBBINNOT: A Hardware Efficient Hybrid Event-Frame Tracker for Stationary
Dynamic Vision Sensors [5.674895233111088]
This paper presents a hybrid event-frame approach for detecting and tracking objects recorded by a stationary neuromorphic sensor.
To exploit the background removal property of a static DVS, we propose an event-based binary image creation that signals presence or absence of events in a frame duration.
This is the first time a stationary DVS based traffic monitoring solution is extensively compared to simultaneously recorded RGB frame-based methods.
arXiv Detail & Related papers (2020-05-31T03:01:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.