論文の概要: Online Versus Offline NMT Quality: An In-depth Analysis on
English-German and German-English
- arxiv url: http://arxiv.org/abs/2006.00814v3
- Date: Tue, 24 Nov 2020 09:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 06:57:03.504607
- Title: Online Versus Offline NMT Quality: An In-depth Analysis on
English-German and German-English
- Title(参考訳): オンラインVersusオフラインNTT品質:英語とドイツ語の詳細な分析
- Authors: Maha Elbayad, Michael Ustaszewski, Emmanuelle Esperan\c{c}a-Rodier,
Francis Brunet Manquat, Jakob Verbeek, Laurent Besacier
- Abstract要約: Convolutional Pervasive Attention と attention-based Transformer の2つのシーケンス・ツー・シーケンスモデルが検討されている。
両アーキテクチャにおいて,オンライン復号化制約が翻訳品質に与える影響を,英語とドイツ語とドイツ語のペアに対して慎重に評価することで検討する。
評価結果により、オンライン設定に移行する際の各モデルの長所と短所を特定することができる。
- 参考スコア(独自算出の注目度): 35.19324442755443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We conduct in this work an evaluation study comparing offline and online
neural machine translation architectures. Two sequence-to-sequence models:
convolutional Pervasive Attention (Elbayad et al. 2018) and attention-based
Transformer (Vaswani et al. 2017) are considered. We investigate, for both
architectures, the impact of online decoding constraints on the translation
quality through a carefully designed human evaluation on English-German and
German-English language pairs, the latter being particularly sensitive to
latency constraints. The evaluation results allow us to identify the strengths
and shortcomings of each model when we shift to the online setup.
- Abstract(参考訳): 本研究は,オフラインとオンラインのニューラルマシン翻訳アーキテクチャを比較した評価研究を行う。
Convolutional Pervasive Attention (Elbayad et al. 2018) と attention-based Transformer (Vaswani et al. 2017) の2つのシーケンス・ツー・シーケンスモデルが検討されている。
両アーキテクチャにおいて,オンライン復号化制約が翻訳品質に与える影響を,英語とドイツ語と英語のペアに対して慎重に設計した人間の評価を通じて検討する。
評価結果により、オンライン設定に移行する際の各モデルの長所と短所を特定することができる。
関連論文リスト
- LANDeRMT: Detecting and Routing Language-Aware Neurons for Selectively Finetuning LLMs to Machine Translation [43.26446958873554]
大規模言語モデル(LLM)は,バイリンガルの監督が限られているにもかかわらず,多言語翻訳において有望な結果を示している。
大規模言語モデル(LLM)の最近の進歩は,バイリンガルの監督が限定された場合でも,多言語翻訳において有望な結果を示している。
LandeRMT は LLM を textbfMachine textbfTranslation に選択的に微調整するフレームワークである。
論文 参考訳(メタデータ) (2024-09-29T02:39:42Z) - Understanding and Addressing the Under-Translation Problem from the Perspective of Decoding Objective [72.83966378613238]
最新のニューラル・マシン・トランスレーション(NMT)システムでは、アンダー・トランスレーションとオーバー・トランスレーションの2つの課題が残っている。
我々は,NMTにおけるアンダートランスレーションの根本原因を詳細に分析し,デコード目的の観点から解説する。
本研究は,低翻訳の検知器としてEOS(End Of Sentence)予測の信頼性を活用し,低翻訳のリスクが高い候補を罰する信頼性に基づくペナルティを強化することを提案する。
論文 参考訳(メタデータ) (2024-05-29T09:25:49Z) - Revisiting Dynamic Evaluation: Online Adaptation for Large Language
Models [88.47454470043552]
我々は、動的評価(動的評価)としても知られる、テスト時の言語モデルのパラメータをオンラインで微調整する問題を考察する。
オンライン適応はパラメータを時間的に変化する状態に変換し、メモリを重み付けしたコンテキスト長拡張の形式を提供する。
論文 参考訳(メタデータ) (2024-03-03T14:03:48Z) - DivEMT: Neural Machine Translation Post-Editing Effort Across
Typologically Diverse Languages [5.367993194110256]
DivEMTは、ニューラルネットワーク翻訳(NMT)に関する、タイプ的かつ多様なターゲット言語に対する初めての公開後研究である。
我々は、Google Translateとオープンソースの多言語モデルmBART50の2つの最先端NTTシステムの翻訳生産性への影響を評価する。
論文 参考訳(メタデータ) (2022-05-24T17:22:52Z) - Non-Parametric Online Learning from Human Feedback for Neural Machine
Translation [54.96594148572804]
本稿では,人間のフィードバックによるオンライン学習の課題について検討する。
従来手法では、高品質な性能を達成するために、オンラインモデル更新や翻訳メモリネットワークの追加が必要であった。
モデル構造を変更することなく、新しい非パラメトリックオンライン学習手法を提案する。
論文 参考訳(メタデータ) (2021-09-23T04:26:15Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslateは、英語と絶滅危惧言語チェロキーとの翻訳のためのオンライン機械翻訳デモシステムである。
統計モデルとニューラルネットワークモデルの両方をサポートし、信頼性をユーザに通知するための品質評価を提供する。
論文 参考訳(メタデータ) (2021-07-30T17:58:54Z) - Comparative Error Analysis in Neural and Finite-state Models for
Unsupervised Character-level Transduction [34.1177259741046]
2つのモデルクラスを並べて比較すると、同等のパフォーマンスを達成したとしても、異なるタイプのエラーが発生する傾向があります。
復号時における有限状態とシーケンス・ツー・シーケンスの組合せが、出力を定量的かつ質的にどう影響するかを考察する。
論文 参考訳(メタデータ) (2021-06-24T00:09:24Z) - Computer Assisted Translation with Neural Quality Estimation and
Automatic Post-Editing [18.192546537421673]
本稿では,機械翻訳出力の品質推定と自動編集のためのエンドツーエンドのディープラーニングフレームワークを提案する。
我々のゴールは、誤り訂正の提案を提供することであり、解釈可能なモデルにより、人間の翻訳者の負担を軽減することである。
論文 参考訳(メタデータ) (2020-09-19T00:29:00Z) - It's Easier to Translate out of English than into it: Measuring Neural
Translation Difficulty by Cross-Mutual Information [90.35685796083563]
クロスミューチュアル情報(英: Cross-mutual information、XMI)は、機械翻訳の難易度に関する非対称情報理論の指標である。
XMIは、ほとんどのニューラルマシン翻訳モデルの確率的性質を利用する。
本稿では,現代ニューラル翻訳システムを用いた言語間翻訳の難易度に関する最初の体系的および制御的な研究について述べる。
論文 参考訳(メタデータ) (2020-05-05T17:38:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。