論文の概要: Should artificial agents ask for help in human-robot collaborative
problem-solving?
- arxiv url: http://arxiv.org/abs/2006.00882v1
- Date: Mon, 25 May 2020 09:15:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 05:38:59.200768
- Title: Should artificial agents ask for help in human-robot collaborative
problem-solving?
- Title(参考訳): 人工エージェントは人間とロボットの協調的問題解決の助けを求めるべきか?
- Authors: Adrien Bennetot, Vicky Charisi, Natalia D\'iaz-Rodr\'iguez
- Abstract要約: 本稿では,人間とロボットの相互作用に関する実証実験から得られた仮説から始めることを提案する。
簡単なクローズドタスクを解くと、専門家から助けを受けることが、このタスクの学習を加速させるかどうかを確認する。
私たちの経験から、Q-ラーニングのアルゴリズムは、Q-ラーニングのアルゴリズムが、子供と同じように専門家の助けから恩恵を受けていると結論付けることができました。
- 参考スコア(独自算出の注目度): 0.7251305766151019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transferring as fast as possible the functioning of our brain to artificial
intelligence is an ambitious goal that would help advance the state of the art
in AI and robotics. It is in this perspective that we propose to start from
hypotheses derived from an empirical study in a human-robot interaction and to
verify if they are validated in the same way for children as for a basic
reinforcement learning algorithm. Thus, we check whether receiving help from an
expert when solving a simple close-ended task (the Towers of Hano\"i) allows to
accelerate or not the learning of this task, depending on whether the
intervention is canonical or requested by the player. Our experiences have
allowed us to conclude that, whether requested or not, a Q-learning algorithm
benefits in the same way from expert help as children do.
- Abstract(参考訳): できるだけ早く脳を人工知能に機能させるというのは、AIとロボティクスの最先端技術を促進するための野心的な目標だ。
この観点から,人間とロボットの相互作用における経験的研究から得られた仮説から始め,基礎的強化学習アルゴリズムと同様の形で検証されているかを検証することを提案する。
したがって、単純な閉じこもったタスク(ハノホイの塔)を解決する際に専門家の助けを受けるかどうかを、その介入が標準的か、またはプレイヤーの要求かによって、このタスクの学習を加速させることができるかチェックする。
私たちの経験から、Q-ラーニングのアルゴリズムは、Q-ラーニングのアルゴリズムが、子供と同じように専門家の助けから恩恵を受けていると結論付けることができました。
関連論文リスト
- Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
論文 参考訳(メタデータ) (2024-11-15T13:22:04Z) - Learning to Assist Humans without Inferring Rewards [65.28156318196397]
我々は、エンパワーメントのレンズを通して支援を研究する先行研究に基づいて構築する。
補助剤は、人間の行動の影響を最大化することを目的としている。
これらの表現は、先行研究と類似したエンパワーメントの概念を推定する。
論文 参考訳(メタデータ) (2024-11-04T21:31:04Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Decision Making for Human-in-the-loop Robotic Agents via
Uncertainty-Aware Reinforcement Learning [13.184897303302971]
ヒューマン・イン・ザ・ループ(Human-in-the-Loop)パラダイムでは、ロボットエージェントはタスクの解決において主に自律的に行動するが、必要に応じて外部の専門家から助けを求めることができる。
本稿では,この課題に対する強化学習に基づくアプローチを提案する。そこでは,半自律エージェントが,タスクの最終的な成功に対する信頼度が低い場合に,外部支援を求める。
本手法は,訓練時に専門家にアクセスできないにも関わらず,実行時に限られた専門家コールの予算を効果的に活用できることを示す。
論文 参考訳(メタデータ) (2023-03-12T17:22:54Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
我々のアルゴリズムは、人間の専門家が実験プロセスでリードすることを可能にする。
我々のアルゴリズムは、AIや人間よりも高速に、サブ線形に収束することを示す。
論文 参考訳(メタデータ) (2023-03-03T02:56:05Z) - When to Ask for Help: Proactive Interventions in Autonomous
Reinforcement Learning [57.53138994155612]
強化学習の長期的な目標は、世界で自律的に対話し学習できるエージェントを設計することである。
重要な課題は、ロボットアームが物体をテーブルから押し出したときなど、外部からの援助を必要とする不可逆状態の存在である。
本研究では,非可逆状態の検出と回避を効率よく学習し,エージェントが侵入した場合に積極的に支援を求めるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-19T17:57:24Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
我々は,カリキュラム強化学習結果を,人的意思決定プロセスから学ぶことで,難しすぎず,難しすぎるような望ましいパフォーマンスレベルに導く。
本システムは非常に並列化可能であり,大規模強化学習アプリケーションの訓練が可能となる。
強化学習性能は、人間の所望の難易度と同期してうまく調整できることが示される。
論文 参考訳(メタデータ) (2022-08-04T23:53:51Z) - Best-Response Bayesian Reinforcement Learning with Bayes-adaptive POMDPs
for Centaurs [22.52332536886295]
本稿では,人間とAIの相互作用を逐次ゲームとして新たに定式化する。
このケースでは、有界人間によるより良い意思決定を支援するというAIの問題は、ベイズ対応のPOMDPに還元される。
我々は、機械が自身の限界と人間の助けを借りて改善する方法について議論する。
論文 参考訳(メタデータ) (2022-04-03T21:00:51Z) - Auditing Robot Learning for Safety and Compliance during Deployment [4.742825811314168]
我々は、ロボット学習アルゴリズムを人間との互換性を確認するのにいかに最適かを研究する。
これは、ロボット学習コミュニティ全体の努力を必要とする難しい問題だと考えています。
論文 参考訳(メタデータ) (2021-10-12T02:40:11Z) - Hierarchical Affordance Discovery using Intrinsic Motivation [69.9674326582747]
本研究では,移動ロボットの価格学習を支援するために,本質的なモチベーションを用いたアルゴリズムを提案する。
このアルゴリズムは、事前にプログラムされたアクションなしで、相互に関連のある価格を自律的に発見し、学習し、適応することができる。
一度学習すると、これらの余裕はアルゴリズムによって様々な困難を伴うタスクを実行するために一連のアクションを計画するために使われる。
論文 参考訳(メタデータ) (2020-09-23T07:18:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。