論文の概要: Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks
- arxiv url: http://arxiv.org/abs/2411.10176v1
- Date: Fri, 15 Nov 2024 13:22:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:17.107708
- Title: Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks
- Title(参考訳): 失敗させよう! バーチャルエージェントとロボットエージェントの学習・バイ・ドーピングにおける影響を探る
- Authors: Marco Matarese, Francesco Rea, Katharina J. Rohlfing, Alessandra Sciutti,
- Abstract要約: 本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
- 参考スコア(独自算出の注目度): 45.23431596135002
- License:
- Abstract: Collaborative decision-making with artificial intelligence (AI) agents presents opportunities and challenges. While human-AI performance often surpasses that of individuals, the impact of such technology on human behavior remains insufficiently understood, primarily when AI agents can provide justifiable explanations for their suggestions. This study compares the effects of classic vs. partner-aware explanations on human behavior and performance during a learning-by-doing task. Three participant groups were involved: one interacting with a computer, another with a humanoid robot, and a third one without assistance. Results indicated that partner-aware explanations influenced participants differently based on the type of artificial agents involved. With the computer, participants enhanced their task completion times. At the same time, those interacting with the humanoid robot were more inclined to follow its suggestions, although they did not reduce their timing. Interestingly, participants autonomously performing the learning-by-doing task demonstrated superior knowledge acquisition than those assisted by explainable AI (XAI). These findings raise profound questions and have significant implications for automated tutoring and human-AI collaboration.
- Abstract(参考訳): 人工知能(AI)エージェントとの協調的な意思決定は、機会と課題を提示する。
人間-AIのパフォーマンスは個人のパフォーマンスを上回ることが多いが、そのような技術が人間の行動に与える影響は、主にAIエージェントが彼らの提案に対して正当化可能な説明を提供する場合に、十分に理解されていない。
本研究は,古典的対パートナー意識による説明が学習作業中の人間の行動とパフォーマンスに与える影響を比較検討した。
3つの参加者グループが参加し、1つはコンピュータ、もう1つはヒューマノイドロボット、もう1つは援助なしだった。
その結果, パートナー意識による説明は, 関係する人工エージェントの種類によって, 参加者に異なる影響を及ぼした。
コンピュータで参加者はタスク完了時間を短縮した。
同時に、ヒューマノイドロボットと対話する人は、その提案に従う傾向があったが、タイミングは低下しなかった。
興味深いことに、自律的に学習・実行タスクを行う参加者は、説明可能なAI(XAI)によって支援された参加者よりも優れた知識獲得を示した。
これらの発見は、深い疑問を提起し、自動学習と人間とAIのコラボレーションに重要な意味を持つ。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - Don't be Fooled: The Misinformation Effect of Explanations in Human-AI Collaboration [11.824688232910193]
我々は,人間がXAIに支えられたAIによる意思決定について研究している。
その結果,誤った説明が正しいAIアドバイスに付随する場合に誤報が生じることがわかった。
この効果は、人間が欠陥のある推論戦略を推測し、タスクの実行を妨げ、手続き的知識の障害を示す。
論文 参考訳(メタデータ) (2024-09-19T14:34:20Z) - On the Effect of Contextual Information on Human Delegation Behavior in
Human-AI collaboration [3.9253315480927964]
我々は、AIにインスタンスを委譲するために、人間の意思決定に文脈情報を提供することの効果について検討する。
参加者にコンテキスト情報を提供することで,人間-AIチームのパフォーマンスが大幅に向上することがわかった。
本研究は,人間代表団における人間とAIの相互作用の理解を深め,より効果的な協調システムを設計するための実用的な洞察を提供する。
論文 参考訳(メタデータ) (2024-01-09T18:59:47Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
我々は、人間とAIのコラボレーションは対話的であり、人間がAIエージェントの作業を監視し、エージェントが理解し活用できるフィードバックを提供するべきだと論じている。
本研究では, IGLUコンペティションによって定義された課題である, マイニングクラフトのような世界における対話型言語理解タスクを用いて, これらの方向を探索する。
論文 参考訳(メタデータ) (2023-04-21T05:37:59Z) - Knowing About Knowing: An Illusion of Human Competence Can Hinder
Appropriate Reliance on AI Systems [13.484359389266864]
本稿では、Dunning-Kruger Effect(DKE)がAIシステムへの適切な依存を妨げているかどうかを論じる。
DKEは、能力の低い個人が自身のスキルやパフォーマンスを過大評価しているため、メタ認知バイアスである。
その結果、パフォーマンスを過大評価する参加者は、AIシステムへの信頼度が低い傾向にあることがわかった。
論文 参考訳(メタデータ) (2023-01-25T14:26:10Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
人々はAIシステムを使って意思決定を改善するが、しばしばAIの予測を過度に、あるいは過度に予測し、手伝わなかったよりも悪いパフォーマンスをする。
人々がAIアシスタントを適切に頼りにするために、行動記述を示すことを提案する。
論文 参考訳(メタデータ) (2023-01-06T00:33:08Z) - Human Decision Makings on Curriculum Reinforcement Learning with
Difficulty Adjustment [52.07473934146584]
我々は,カリキュラム強化学習結果を,人的意思決定プロセスから学ぶことで,難しすぎず,難しすぎるような望ましいパフォーマンスレベルに導く。
本システムは非常に並列化可能であり,大規模強化学習アプリケーションの訓練が可能となる。
強化学習性能は、人間の所望の難易度と同期してうまく調整できることが示される。
論文 参考訳(メタデータ) (2022-08-04T23:53:51Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Learning to Complement Humans [67.38348247794949]
オープンワールドにおけるAIに対するビジョンの高まりは、知覚、診断、推論タスクのために人間を補完できるシステムの開発に焦点を当てている。
我々は,人間-機械チームの複合的なパフォーマンスを最適化するために,エンド・ツー・エンドの学習戦略をどのように活用できるかを実証する。
論文 参考訳(メタデータ) (2020-05-01T20:00:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。