論文の概要: Using competency questions to select optimal clustering structures for
residential energy consumption patterns
- arxiv url: http://arxiv.org/abs/2006.00934v1
- Date: Mon, 1 Jun 2020 13:30:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-26 06:13:03.679137
- Title: Using competency questions to select optimal clustering structures for
residential energy consumption patterns
- Title(参考訳): 住宅エネルギー消費パターンの最適クラスタリング構造選択のための能力質問の利用
- Authors: Wiebke Toussaint, Deshendran Moodley
- Abstract要約: この研究は、住宅エネルギー消費部門におけるクラスタリングアプリケーションのコンテキスト特異的評価のために、専門家の知識と応用要件を定式化するために、能力質問がどのように使用できるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During cluster analysis domain experts and visual analysis are frequently
relied on to identify the optimal clustering structure. This process tends to
be adhoc, subjective and difficult to reproduce. This work shows how competency
questions can be used to formalise expert knowledge and application
requirements for context specific evaluation of a clustering application in the
residential energy consumption sector.
- Abstract(参考訳): クラスタ分析の間、専門家とビジュアル分析はしばしば最適なクラスタリング構造を特定するために頼りにされます。
このプロセスはアドホックで主観的で再現が難しい傾向にある。
本研究は、住宅用エネルギー消費部門におけるクラスタリングアプリケーションのコンテキスト固有の評価のために、専門家の知識とアプリケーション要件を形式化するために、能力的疑問をいかに利用できるかを示す。
関連論文リスト
- Improving Retrieval in Theme-specific Applications using a Corpus
Topical Taxonomy [52.426623750562335]
ToTER (Topical Taxonomy Enhanced Retrieval) フレームワークを紹介する。
ToTERは、クエリとドキュメントの中心的なトピックを分類学のガイダンスで識別し、そのトピックの関連性を利用して、欠落したコンテキストを補う。
プラグイン・アンド・プレイのフレームワークとして、ToTERは様々なPLMベースのレトリバーを強化するために柔軟に使用できる。
論文 参考訳(メタデータ) (2024-03-07T02:34:54Z) - A Machine Learning-Based Framework for Clustering Residential
Electricity Load Profiles to Enhance Demand Response Programs [0.0]
実ケーススタディを通じて最適な負荷プロファイルを実現するために,機械学習に基づく新しいフレームワークを提案する。
本稿では,実ケーススタディを通じて最適な負荷プロファイルを実現するために,機械学習に基づく新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T11:23:26Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE)は、安価な計算オーバーヘッドを持つ有望なスケーリング能力のため、大きな関心を集めている。
MoEは密度の高い層をスパースの専門家に変換し、ゲートルーティングネットワークを使用して専門家を条件付きで活性化させる。
しかし、専門家の数が増加するにつれて、乱雑なパラメータを持つMoEはデータアロケーションの過度な調整とスパースに悩まされる。
論文 参考訳(メタデータ) (2022-07-19T06:09:55Z) - ExpertNet: A Symbiosis of Classification and Clustering [22.324813752423044]
ExpertNetは、クラスタ化された潜在表現を学習し、クラスタ固有の分類器を効果的に組み合わせてそれらを活用するために、新しいトレーニング戦略を使用している。
本研究では,6つの大規模臨床データセットの最先端手法に対するExpertNetの優位性を実証する。
論文 参考訳(メタデータ) (2022-01-17T11:00:30Z) - KnAC: an approach for enhancing cluster analysis with background
knowledge and explanations [0.20999222360659603]
我々はKnAC(Knowledge Augmented Clustering)を紹介します。
KnACは任意のクラスタリングアルゴリズムの拡張として機能し、アプローチを堅牢でモデルに依存しないものにすることができる。
論文 参考訳(メタデータ) (2021-12-16T10:13:47Z) - Decision-making Oriented Clustering: Application to Pricing and Power
Consumption Scheduling [61.062312682535755]
本稿では、意思決定指向クラスタリングの枠組みを定式化し、データ空間の判断に基づく分割と適切な代表決定を提供するアルゴリズムを提案する。
この新しいフレームワークとアルゴリズムを、リアルタイム価格と消費電力スケジューリングの典型的な問題に適用することにより、洞察に富んだ分析結果を得る。
論文 参考訳(メタデータ) (2021-06-02T08:41:04Z) - A Clustering Framework for Residential Electric Demand Profiles [2.294014185517203]
本稿では,オランダのアムステルダム市に居住する世帯の電気需要プロファイルを分析した。
包括的なクラスタリングフレームワークは、電力消費パターンに基づいて世帯を分類するために定義される。
論文 参考訳(メタデータ) (2021-05-17T09:19:34Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
本研究は,パブリックおよび新規な商用データ集合を用いて,アナリストがユーザベースをクラスタリングし,詳細なレベルで需要を計画できることを示す。
本研究は,TDAに基づく時系列クラスタリングと行列因数分解法によるクラスタ回帰を実践者にとって実行可能なツールとして導入することを目的とする。
論文 参考訳(メタデータ) (2020-09-08T12:10:10Z) - Clustering Residential Electricity Consumption Data to Create Archetypes
that Capture Household Behaviour in South Africa [0.0]
本稿では、顧客アーチタイプを作成するための外部評価尺度として、暗黙のエキスパート知識を形式化するアプローチを提案する。
選択したクラスタを,これまで専門家が開発していたユーザアーカイブの再構築に成功したユースケースで検証する。
我々のアプローチは、たとえドメイン知識が限られていても、透過的で反復可能なクラスタランキングとデータサイエンティストによる選択を約束することを示している。
論文 参考訳(メタデータ) (2020-06-11T10:20:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。