論文の概要: Towards Large-Scale Data Mining for Data-Driven Analysis of Sign
Languages
- arxiv url: http://arxiv.org/abs/2006.02120v1
- Date: Wed, 3 Jun 2020 09:28:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 18:03:15.345912
- Title: Towards Large-Scale Data Mining for Data-Driven Analysis of Sign
Languages
- Title(参考訳): 手話データ駆動分析のための大規模データマイニング
- Authors: Boris Mocialov, Graham Turner, Helen Hastie
- Abstract要約: 我々は、TikTok、Instagram、YouTubeなどのソーシャルネットワーキングサービスからデータを収集できることを示します。
データ収集パイプラインを用いて,アメリカ手話 (ASL) とブラジル手話 (Libras) の両方で歌の解釈を収集,検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Access to sign language data is far from adequate. We show that it is
possible to collect the data from social networking services such as TikTok,
Instagram, and YouTube by applying data filtering to enforce quality standards
and by discovering patterns in the filtered data, making it easier to analyse
and model. Using our data collection pipeline, we collect and examine the
interpretation of songs in both the American Sign Language (ASL) and the
Brazilian Sign Language (Libras). We explore their differences and similarities
by looking at the co-dependence of the orientation and location phonological
parameters
- Abstract(参考訳): 手話データへのアクセスは十分ではない。
我々は,TikTokやInstagram,YouTubeなどのソーシャルネットワーキングサービスから,品質基準を強制するためにデータフィルタリングを適用し,フィルタリングされたデータのパターンを発見して,分析とモデル化を容易にすることによって,データを収集できることを実証した。
当社のデータ収集パイプラインを用いて,米国手話(asl)とブラジル手話(libras)における歌の解釈を収集し,検討した。
方向と位置音韻パラメータの共依存に着目し,それらの差異と類似性について検討する。
関連論文リスト
- Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
我々は22言語以上で訓練された多言語エンドツーエンド音声翻訳モデルで学習した表現を解析する。
我々は分析から3つの大きな発見を得た。
論文 参考訳(メタデータ) (2023-10-31T13:50:55Z) - How do languages influence each other? Studying cross-lingual data sharing during LM fine-tuning [14.02101305717738]
多言語大言語モデル(MLLM)は、多くの異なる言語からのデータに基づいて共同で訓練される。
言語がどの程度、どの条件下で、互いのデータに依存しているかは、まだ不明である。
MLLMは、細調整の初期段階から複数の言語からのデータに依存しており、細調整の進行に伴って、この依存度が徐々に増加することが判明した。
論文 参考訳(メタデータ) (2023-05-22T17:47:41Z) - LSA-T: The first continuous Argentinian Sign Language dataset for Sign
Language Translation [52.87578398308052]
手話翻訳(SLT)は、人間とコンピュータの相互作用、コンピュータビジョン、自然言語処理、機械学習を含む活発な研究分野である。
本稿では,最初の連続的アルゼンチン手話(LSA)データセットを提案する。
このビデオには、CN Sordos YouTubeチャンネルから抽出されたLCAの14,880の文レベルのビデオと、各署名者のためのラベルとキーポイントアノテーションが含まれている。
論文 参考訳(メタデータ) (2022-11-14T14:46:44Z) - Speech-to-Speech Translation For A Real-world Unwritten Language [62.414304258701804]
本研究では、ある言語から別の言語に音声を翻訳する音声音声翻訳(S2ST)について研究する。
我々は、トレーニングデータ収集、モデル選択、ベンチマークデータセットのリリースからエンドツーエンドのソリューションを提示します。
論文 参考訳(メタデータ) (2022-11-11T20:21:38Z) - ASL-Homework-RGBD Dataset: An annotated dataset of 45 fluent and
non-fluent signers performing American Sign Language homeworks [32.3809065803553]
このデータセットには、American Sign Language (ASL) を使用した、流動的で非流動的なシグナのビデオが含まれている。
受講生は45名、受講生は45名、受講生は45名であった。
データは、文法的特徴や非マニュアルマーカーを含む署名のいくつかの側面を特定するために注釈付けされている。
論文 参考訳(メタデータ) (2022-07-08T17:18:49Z) - WLASL-LEX: a Dataset for Recognising Phonological Properties in American
Sign Language [2.814213966364155]
我々は6つの異なる音韻特性を付加したアメリカ手話記号の大規模データセットを構築した。
データ駆動のエンドツーエンドと機能ベースのアプローチが、これらの特性を自動認識するために最適化できるかどうかを検討する。
論文 参考訳(メタデータ) (2022-03-11T17:21:24Z) - A Simple Multi-Modality Transfer Learning Baseline for Sign Language
Translation [54.29679610921429]
既存の手話データセットには、約10K-20Kの手話ビデオ、グロスアノテーション、テキストが含まれています。
したがって、データは効果的な手話翻訳モデルの訓練のボトルネックとなる。
この単純なベースラインは、2つの手話翻訳ベンチマークで過去の最先端の結果を上回っている。
論文 参考訳(メタデータ) (2022-03-08T18:59:56Z) - Dataset Geography: Mapping Language Data to Language Users [17.30955185832338]
本研究では,NLPデータセットが言語話者の期待するニーズにどの程度一致しているかを定量化することを目的として,NLPデータセットの地理的代表性について検討する。
その際、エンティティ認識とリンクシステムを使用し、言語間の一貫性について重要な観察を行う。
最後に,観測された分布データセットを説明するための地理的・経済的要因について検討する。
論文 参考訳(メタデータ) (2021-12-07T05:13:50Z) - BBC-Oxford British Sign Language Dataset [64.32108826673183]
我々は,British Sign Language (BSL) の大規模ビデオコレクションである BBC-Oxford British Sign Language (BOBSL) データセットを紹介する。
データセットのモチベーションと統計、利用可能なアノテーションについて説明する。
我々は、手話認識、手話アライメント、手話翻訳のタスクのベースラインを提供する実験を行う。
論文 参考訳(メタデータ) (2021-11-05T17:35:58Z) - GATE: Graph Attention Transformer Encoder for Cross-lingual Relation and
Event Extraction [107.8262586956778]
言語に依存しない文表現を学習するために、普遍的な依存解析を伴うグラフ畳み込みネットワーク(GCN)を導入する。
GCNは、長い範囲の依存関係を持つ単語をモデル化するのに苦労する。
そこで本研究では,構文的距離の異なる単語間の依存関係を学習するための自己認識機構を提案する。
論文 参考訳(メタデータ) (2020-10-06T20:30:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。