論文の概要: Communication-Computation Trade-Off in Resource-Constrained Edge
Inference
- arxiv url: http://arxiv.org/abs/2006.02166v2
- Date: Wed, 14 Oct 2020 11:54:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 17:34:53.801167
- Title: Communication-Computation Trade-Off in Resource-Constrained Edge
Inference
- Title(参考訳): 資源制約エッジ推論における通信計算のトレードオフ
- Authors: Jiawei Shao, Jun Zhang
- Abstract要約: 本稿では,資源制約のあるデバイスにおけるエッジ推論の効果的な手法を提案する。
エッジコンピューティングサーバが支援するデバイスとエッジのコ推論に重点を置いている。
効果的な推論のために3段階のフレームワークを提案する。
- 参考スコア(独自算出の注目度): 5.635540684037595
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent breakthrough in artificial intelligence (AI), especially deep
neural networks (DNNs), has affected every branch of science and technology.
Particularly, edge AI has been envisioned as a major application scenario to
provide DNN-based services at edge devices. This article presents effective
methods for edge inference at resource-constrained devices. It focuses on
device-edge co-inference, assisted by an edge computing server, and
investigates a critical trade-off among the computation cost of the on-device
model and the communication cost of forwarding the intermediate feature to the
edge server. A three-step framework is proposed for the effective inference:
(1) model split point selection to determine the on-device model, (2)
communication-aware model compression to reduce the on-device computation and
the resulting communication overhead simultaneously, and (3) task-oriented
encoding of the intermediate feature to further reduce the communication
overhead. Experiments demonstrate that our proposed framework achieves a better
trade-off and significantly reduces the inference latency than baseline
methods.
- Abstract(参考訳): 人工知能(AI)の最近のブレークスルー、特にディープニューラルネットワーク(DNN)は、科学と技術のあらゆる分野に影響を与えている。
特に、エッジデバイスでDNNベースのサービスを提供するための主要なアプリケーションシナリオとして、エッジAIが想定されている。
本稿では,資源制約のあるデバイスにおけるエッジ推論の効果的な手法を提案する。
エッジコンピューティングサーバが支援するデバイスエッジコカンファレンスに注目し、オンデバイスモデルの計算コストと中間機能をエッジサーバに転送する通信コストの間の重要なトレードオフを調査します。
1) オンデバイスモデルを決定するためのモデル分割点選択, (2) オンデバイス計算と結果として生じる通信オーバーヘッドを同時に削減するための通信認識モデル圧縮, (3) 中間機能のタスク指向エンコーディングにより通信オーバーヘッドがさらに低減される3段階のフレームワークを提案する。
実験により,提案フレームワークがより良いトレードオフを達成し,ベースラインメソッドよりも推論遅延を大幅に低減できることが実証された。
関連論文リスト
- Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL)は、モバイルデバイス上で機械学習モデルをトレーニングするためのプライバシー保護フレームワークを提供する。
従来のFLアルゴリズム、例えばFedAvgはこれらのデバイスに重い通信負荷を課す。
エッジデバイスをエッジサーバに接続し,エッジサーバをピアツーピア(P2P)エッジバックホールを介して相互接続する2層HFELシステムを提案する。
我々の目標は、戦略的資源配分とトポロジ設計により、HFELシステムの訓練効率を向上させることである。
論文 参考訳(メタデータ) (2024-09-29T01:48:04Z) - Robust Communication and Computation using Deep Learning via Joint Uncertainty Injection [15.684142238738797]
コミュニケーションと計算の収束と機械学習と人工知能の統合は、第6世代通信システム(6G)の鍵となる力となる。
本稿では,空間多重化を用いた複数のデバイスを同時に運用する1つの基地局のネットワークについて考察する。
そこで本稿では,チャネル情報と計算状態情報の両面での不確実性の中で,通信と計算機のパワーを同時に管理する,革新的なディープラーニングベースのアプローチを提案する。
論文 参考訳(メタデータ) (2024-06-05T18:00:09Z) - Adaptive Early Exiting for Collaborative Inference over Noisy Wireless
Channels [17.890390892890057]
コラボレーション推論システムは、無線ネットワークエッジにディープニューラルネットワーク(DNN)をデプロイする新たなソリューションの1つである。
本研究では,特定の試料のエッジデバイスにおける推定結果の取得を可能にする共同推論の文脈における早期退避について検討する。
システムの中心となるのは送信決定機構(TD)であり、早期終了予測を維持するか、エッジサーバにデータを送信してさらなる処理を行うかを決定する。
論文 参考訳(メタデータ) (2023-11-29T21:31:59Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
本稿では,AIモデルの分割推論と統合センシング通信(ISAC)を併用した,新しいマルチインテリジェントエッジ人工レイテンシ(AI)システムについて検討する。
推定精度は近似的だが抽出可能な計量、すなわち判別利得を用いて測定する。
論文 参考訳(メタデータ) (2022-07-03T06:57:07Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Communication-Efficient Separable Neural Network for Distributed
Inference on Edge Devices [2.28438857884398]
本稿では,分散推論のためのニューラルネットワークを分離するために,モデル並列性を利用する新しい手法を提案する。
デバイスの適切な仕様とモデルの構成の下で、エッジクラスタ上の大規模ニューラルネットワークの推論が分散し、加速可能であることを示す実験を行った。
論文 参考訳(メタデータ) (2021-11-03T19:30:28Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
エッジ対応産業用IoTネットワークにおける計算知能とディープラーニング(DL)の展開方法について検討する。
本稿では,新しいマルチエグジットベースフェデレーションエッジ学習(ME-FEEL)フレームワークを提案する。
特に、提案されたME-FEELは、非常に限られたリソースを持つ産業用IoTネットワークにおいて、最大32.7%の精度を達成することができる。
論文 参考訳(メタデータ) (2021-10-28T08:14:57Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
デバイスエッジのコ推論は、リソース制約のあるモバイルデバイスとエッジサーバの間のディープニューラルネットワークを分割する。
オンデバイスモデルスパーシリティレベルと中間特徴圧縮比は、ワークロードと通信オーバーヘッドに直接的な影響を与える。
深部強化学習(DRL)に基づく新しい自動機械学習(AutoML)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-30T06:36:30Z) - Accelerating Federated Edge Learning via Optimized Probabilistic Device
Scheduling [57.271494741212166]
本稿では,通信時間最小化問題を定式化し,解決する。
最適化されたポリシーは、トレーニングプロセスが進むにつれて、残りの通信ラウンドの抑制から、ラウンドごとのレイテンシの低減へと、徐々に優先順位を転換している。
提案手法の有効性は,自律運転における協調的3次元目標検出のユースケースを通じて実証される。
論文 参考訳(メタデータ) (2021-07-24T11:39:17Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
本稿では,異種分散環境に適用可能なaiopsプラットフォームのシステム設計について述べる。
高頻度でメトリクスを収集し、エッジデバイス上で特定の異常検出アルゴリズムを直接実行することが可能である。
論文 参考訳(メタデータ) (2021-02-12T09:33:00Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。