論文の概要: Quantum process tomography with unsupervised learning and tensor
networks
- arxiv url: http://arxiv.org/abs/2006.02424v1
- Date: Wed, 3 Jun 2020 17:54:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-17 06:31:50.728191
- Title: Quantum process tomography with unsupervised learning and tensor
networks
- Title(参考訳): 教師なし学習とテンソルネットワークを用いた量子プロセストモグラフィ
- Authors: Giacomo Torlai, Christopher J. Wood, Atithi Acharya, Giuseppe Carleo,
Juan Carrasquilla and Leandro Aolita
- Abstract要約: 本稿では,量子プロセストモグラフィーを行う新しい手法を提案する。
チャネルのテンソルネットワーク表現と、教師なし機械学習にインスパイアされたデータ駆動最適化を組み合わせる。
私たちの結果は最先端以上のもので、現在の量子コンピュータと短期量子コンピュータで量子回路をベンチマークするための実用的でタイムリーなツールを提供しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The impressive pace of advance of quantum technology calls for robust and
scalable techniques for the characterization and validation of quantum
hardware. Quantum process tomography, the reconstruction of an unknown quantum
channel from measurement data, remains the quintessential primitive to
completely characterize quantum devices. However, due to the exponential
scaling of the required data and classical post-processing, its range of
applicability is typically restricted to one- and two-qubit gates. Here, we
present a new technique for performing quantum process tomography that
addresses these issues by combining a tensor network representation of the
channel with a data-driven optimization inspired by unsupervised machine
learning. We demonstrate our technique through synthetically generated data for
ideal one- and two-dimensional random quantum circuits of up to 10 qubits, and
a noisy 5-qubit circuit, reaching process fidelities above 0.99 using only a
limited set of single-qubit measurement samples and input states. Our results
go far beyond state-of-the-art, providing a practical and timely tool for
benchmarking quantum circuits in current and near-term quantum computers.
- Abstract(参考訳): 量子技術の進歩の驚くべきペースは、量子ハードウェアの特性と検証のための堅牢でスケーラブルな技術を要求する。
量子プロセストモグラフィーは、測定データから未知の量子チャネルを再構築するものであり、量子デバイスを完全に特徴付けるために必須のプリミティブである。
しかし、要求されるデータの指数的スケーリングと古典的な後処理のため、適用範囲は1ビットと2ビットのゲートに限られる。
本稿では、チャネルのテンソルネットワーク表現と教師なし機械学習にインスパイアされたデータ駆動最適化を組み合わせることで、これらの問題に対処する量子プロセストモグラフィーを行う新しい手法を提案する。
提案手法は,最大10量子ビットまでの理想1次元および2次元ランダム量子回路とノイズ5量子ビット回路のための合成データを用いて実証し,単一量子ビット測定サンプルと入力状態の限られたセットのみを用いて0.99以上のプロセスフィダリティを達成する。
我々の結果は最先端以上のもので、現在および短期の量子コンピュータで量子回路をベンチマークするための実用的でタイムリーなツールを提供する。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Quantivine: A Visualization Approach for Large-scale Quantum Circuit
Representation and Analysis [31.203764035373677]
我々は量子回路の探索と理解のための対話型システムQuantivineを開発した。
一連の新しい回路視覚化は、キュービットの証明、並列性、絡み合いなどのコンテキストの詳細を明らかにするように設計されている。
Quantivineの有効性は、最大100キュービットの量子回路の2つの利用シナリオを通して示される。
論文 参考訳(メタデータ) (2023-07-18T04:51:28Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
量子コンピュータ上での単位ステップ関数の形で非線形性を近似するための振幅に基づく実装を提案する。
より先進的な量子アルゴリズムに埋め込まれた場合、古典的コンピュータから直接入力を受ける2つの異なる回路タイプを量子状態として記述する。
論文 参考訳(メタデータ) (2022-06-07T07:14:12Z) - Data compression for quantum machine learning [2.119778346188635]
量子コンピュータで使用する古典的データを効率よく圧縮・ロードする問題に対処する。
提案手法により,必要量子ビット数と量子回路の深さを調整できる。
論文 参考訳(メタデータ) (2022-04-24T03:03:14Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Variational quantum process tomography [12.843681115589122]
我々は、未知のユニタリ量子プロセスを比較的浅い深さパラメトリック量子回路に符号化する量子機械学習アルゴリズムを提唱した。
その結果、これらの量子プロセスは高い忠実度で再構成可能である一方で、必要な入力状態の数は、標準量子プロセストモグラフィーで要求されるよりも少なくとも2ドル以下であることがわかった。
論文 参考訳(メタデータ) (2021-08-05T03:36:26Z) - Learning Temporal Quantum Tomography [0.0]
量子状態の準備における制御レベルの定量化と検証は、量子デバイス構築における中心的な課題である。
本稿では,機械学習フレームワークを用いた実用的近似トモグラフィ法を開発した。
量子学習タスクのためのアルゴリズムを実証し、その後、量子短期記憶容量を提案して、短期量子デバイスの時間的処理能力を評価する。
論文 参考訳(メタデータ) (2021-03-25T17:01:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。