論文の概要: Federated Learning for Physical Layer Design
- arxiv url: http://arxiv.org/abs/2102.11777v1
- Date: Tue, 23 Feb 2021 16:22:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-24 13:45:04.079655
- Title: Federated Learning for Physical Layer Design
- Title(参考訳): 物理層設計のための連合学習
- Authors: Ahmet M. Elbir and Anastasios K. Papazafeiropoulos and Symeon
Chatzinotas
- Abstract要約: Federated Learning (FL) は最近,分散学習スキームとして提案されている。
FLは集中型学習(CL)よりもコミュニケーション効率が高くプライバシーを保ちます。
本稿では,物理層設計問題に対するFLベーストレーニングの最近の進歩について論じる。
- 参考スコア(独自算出の注目度): 38.46522285374866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model-free techniques, such as machine learning (ML), have recently attracted
much interest for physical layer design, e.g., symbol detection, channel
estimation and beamforming. Most of these ML techniques employ centralized
learning (CL) schemes and assume the availability of datasets at a parameter
server (PS), demanding the transmission of data from the edge devices, such as
mobile phones, to the PS. Exploiting the data generated at the edge, federated
learning (FL) has been proposed recently as a distributed learning scheme, in
which each device computes the model parameters and sends them to the PS for
model aggregation, while the datasets are kept intact at the edge. Thus, FL is
more communication-efficient and privacy-preserving than CL and applicable to
the wireless communication scenarios, wherein the data are generated at the
edge devices. This article discusses the recent advances in FL-based training
for physical layer design problems, and identifies the related design
challenges along with possible solutions to improve the performance in terms of
communication overhead, model/data/hardware complexity.
- Abstract(参考訳): 機械学習(ML)のようなモデルフリーの技術は最近、記号検出、チャネル推定、ビームフォーミングなどの物理層設計に多くの関心を集めている。
これらのML技術のほとんどは集中学習(CL)方式を採用し、パラメータサーバ(PS)でのデータセットの可用性を想定し、携帯電話などのエッジデバイスからPSへのデータの送信を要求します。
エッジで生成されたデータを活用することで、フェデレーション学習(fl)が分散学習スキームとして提案され、各デバイスがモデルパラメータを計算し、モデル集約のためにpsに送信し、データセットはエッジに保持される。
したがって、FLはCLよりも通信効率が良くプライバシーが保護され、エッジデバイスでデータが生成される無線通信シナリオに適用できる。
この記事では、物理層設計問題に対するFLベースのトレーニングの最近の進歩を説明し、通信オーバーヘッド、モデル/データ/ハードウェアの複雑さの観点からパフォーマンスを向上させるための可能なソリューションとともに関連する設計課題を特定します。
関連論文リスト
- Gradient-Congruity Guided Federated Sparse Training [31.793271982853188]
Federated Learning(FL)は、データプライバシを保持しながら、このプロセスを容易にする分散機械学習技術である。
FLはまた、リソース制約のあるデバイスに関する高い計算コストや通信コストといった課題に直面している。
本研究では,動的スパーストレーニングと勾配一致検査を統合したFedSGC(Gradient-Congruity Guided Federated Sparse Training)を提案する。
論文 参考訳(メタデータ) (2024-05-02T11:29:48Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - Multi-Edge Server-Assisted Dynamic Federated Learning with an Optimized
Floating Aggregation Point [51.47520726446029]
協調エッジ学習(CE-FL)は、分散機械学習アーキテクチャである。
CE-FLの過程をモデル化し,分析訓練を行った。
実世界のテストベッドから収集したデータを用いて,本フレームワークの有効性を示す。
論文 参考訳(メタデータ) (2022-03-26T00:41:57Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Spatio-Temporal Federated Learning for Massive Wireless Edge Networks [23.389249751372393]
エッジサーバと多数のモバイルデバイス(クライアント)は、モバイルデバイスが収集した膨大なデータをエッジサーバに転送することなく、グローバルモデルを共同で学習する。
提案手法は,STFLに参加する予定の様々なモバイルデバイスからの学習更新の空間的および時間的相関を利用している。
収束性能を用いてSTFLの学習能力を研究するために,STFLの分析フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-27T16:46:45Z) - Reconfigurable Intelligent Surface Enabled Federated Learning: A Unified
Communication-Learning Design Approach [30.1988598440727]
我々は,デバイス選択,無線トランシーバ設計,RIS構成を協調的に最適化する統一的なコミュニケーション学習最適化問題を開発した。
数値実験により,提案手法は最先端の手法と比較して,学習精度が大幅に向上することが示された。
論文 参考訳(メタデータ) (2020-11-20T08:54:13Z) - Wireless Communications for Collaborative Federated Learning [160.82696473996566]
IoT(Internet of Things)デバイスは、収集したデータを中央のコントローラに送信することができず、機械学習モデルをトレーニングすることができる。
GoogleのセミナルFLアルゴリズムでは、すべてのデバイスを中央コントローラに直接接続する必要がある。
本稿では,コラボレーティブFL(CFL)と呼ばれる新しいFLフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-03T20:00:02Z) - Federated Learning for Hybrid Beamforming in mm-Wave Massive MIMO [12.487990897680422]
本稿では,ハイブリッドビームフォーミングのためのFL(Federated Learning)ベースのフレームワークを紹介し,ベースステーションでモデルトレーニングを行う。
我々は、入力がチャネルデータである畳み込みニューラルネットワークを設計し、出力時にアナログビームフォーマを出力する。
FLは、チャネルデータの不完全性や破損に対してより寛容であり、CMLよりも透過オーバーヘッドが少ないことが示されている。
論文 参考訳(メタデータ) (2020-05-20T11:21:07Z) - Federated Learning for Resource-Constrained IoT Devices: Panoramas and
State-of-the-art [12.129978716326676]
我々は最近実装されたフェデレートラーニングの現実的な応用をいくつか紹介する。
大規模ネットワークでは、様々な計算資源を持つクライアントが存在するかもしれない。
FL領域における資源制約装置の今後の方向性を強調した。
論文 参考訳(メタデータ) (2020-02-25T01:03:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。