Prediction of short and long-term droughts using artificial neural
networks and hydro-meteorological variables
- URL: http://arxiv.org/abs/2006.02581v1
- Date: Wed, 3 Jun 2020 23:20:34 GMT
- Title: Prediction of short and long-term droughts using artificial neural
networks and hydro-meteorological variables
- Authors: Yousef Hassanzadeh, Mohammadvaghef Ghazvinian, Amin Abdi, Saman
Baharvand, Ali Jozaghi
- Abstract summary: Models of Artificial Neural Network (ANN) are employed to predict short and long-term of droughts by using Standardized Precipitation Index (SPI) at different time scales.
The results illustrate that the application of all hydro-meteorological variables significantly improves the prediction of SPI at different time scales.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drought is a natural creeping threat with numerous damaging effects in
various aspects of human life. Accurate drought prediction is a promising step
in helping policy makers to set drought risk management strategies. To fulfill
this purpose, choosing appropriate models plays an important role in predicting
approach. In this study, different models of Artificial Neural Network (ANN)
are employed to predict short and long-term of droughts by using Standardized
Precipitation Index (SPI) at different time scales, including 3, 6, 12, 24 and
48 months in Tabriz city, Iran. To this end, different combination of
calculated SPI and time series of various hydro-meteorological variables, such
as precipitation, wind velocity, relative humidity and sunshine hours for years
1992 to 2010 are used to train the ANN models. In order to compare the models
performances, some well-known measures, namely RMSE, Mean Absolute Error (MAE)
and Correlation Coefficient (CC) are utilized in the present study. The results
illustrate that the application of all hydro-meteorological variables
significantly improves the prediction of SPI at different time scales.
Related papers
- Harmful algal bloom forecasting. A comparison between stream and batch
learning [0.7067443325368975]
Harmful Algal Blooms (HABs) pose risks to public health and the shellfish industry.
This study develops a machine learning workflow for predicting the number of cells of a toxic dinoflagellate.
The model DoME emerged as the most effective and interpretable predictor, outperforming the other algorithms.
arXiv Detail & Related papers (2024-02-20T15:01:11Z) - Learning from Polar Representation: An Extreme-Adaptive Model for
Long-Term Time Series Forecasting [10.892801642895904]
We propose Distance-weighted Auto-regularized Neural network (DAN), a novel extreme-adaptive model for long-range forecasting of stremflow enhanced by polar representation learning.
On four real-life hydrologic streamflow datasets, we demonstrate that DAN significantly outperforms both state-of-the-art hydrologic time series prediction methods and general methods designed for long-term time series prediction.
arXiv Detail & Related papers (2023-12-14T09:16:01Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - The Capacity and Robustness Trade-off: Revisiting the Channel
Independent Strategy for Multivariate Time Series Forecasting [50.48888534815361]
We show that models trained with the Channel Independent (CI) strategy outperform those trained with the Channel Dependent (CD) strategy.
Our results conclude that the CD approach has higher capacity but often lacks robustness to accurately predict distributionally drifted time series.
We propose a modified CD method called Predict Residuals with Regularization (PRReg) that can surpass the CI strategy.
arXiv Detail & Related papers (2023-04-11T13:15:33Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Modeling of Pan Evaporation Based on the Development of Machine Learning
Methods [0.0]
Changes in climatic factors, such as changes in temperature, wind speed, sunshine hours, humidity, and solar radiation can have a significant impact on the evaporation process.
The aim of this study is to investigate the feasibility of several machines learning (ML) models for modeling the monthly pan evaporation estimation.
arXiv Detail & Related papers (2021-10-10T10:06:16Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
Most existing forecasting models disregard uncertainty quantification, resulting in mis-calibrated predictions.
Recent works in deep neural models for uncertainty-aware time-series forecasting also have several limitations.
We model the forecasting task as a probabilistic generative process and propose a functional neural process model called EPIFNP.
arXiv Detail & Related papers (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - Crop Yield Prediction Integrating Genotype and Weather Variables Using
Deep Learning [8.786816847837976]
We use historical performance records from Uniform Soybean Tests (UST) in North America spanning 13 years of data to build a Long Short Term Memory - Recurrent Neural Network based model to dissect and predict genotype response in multiple environments.
We deploy this deep learning framework as a 'hypotheses generation tool' to unravel GxExM relationships.
We envision broad applicability of this approach (via conducting sensitivity analysis and "what-if" scenarios) for soybean and other crop species under different climatic conditions.
arXiv Detail & Related papers (2020-06-24T16:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.