論文の概要: Integrating Machine Learning with Physics-Based Modeling
- arxiv url: http://arxiv.org/abs/2006.02619v1
- Date: Thu, 4 Jun 2020 02:35:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-25 12:47:23.764534
- Title: Integrating Machine Learning with Physics-Based Modeling
- Title(参考訳): 物理モデルによる機械学習の統合
- Authors: Weinan E, Jiequn Han, Linfeng Zhang
- Abstract要約: この記事では、幅広い関心事の1つに焦点を当てる。 機械学習と物理に基づくモデリングをどのように統合できるのか?
機械学習に基づく物理モデルを開発する上で最も重要な2つの課題について論じる。
最終的には、この統合がどこに導くのか、そして機械学習が科学的モデリングにうまく統合された後、新たなフロンティアがどこにあるのか、という一般的な議論で終わります。
- 参考スコア(独自算出の注目度): 17.392391163553334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning is poised as a very powerful tool that can drastically
improve our ability to carry out scientific research. However, many issues need
to be addressed before this becomes a reality. This article focuses on one
particular issue of broad interest: How can we integrate machine learning with
physics-based modeling to develop new interpretable and truly reliable physical
models? After introducing the general guidelines, we discuss the two most
important issues for developing machine learning-based physical models:
Imposing physical constraints and obtaining optimal datasets. We also provide a
simple and intuitive explanation for the fundamental reasons behind the success
of modern machine learning, as well as an introduction to the concurrent
machine learning framework needed for integrating machine learning with
physics-based modeling. Molecular dynamics and moment closure of kinetic
equations are used as examples to illustrate the main issues discussed. We end
with a general discussion on where this integration will lead us to, and where
the new frontier will be after machine learning is successfully integrated into
scientific modeling.
- Abstract(参考訳): 機械学習は、科学研究を行う能力を大幅に向上させる、非常に強力なツールとして位置づけられている。
しかし、これが現実になる前に、多くの問題に対処する必要がある。
機械学習と物理に基づくモデリングを統合して、新しい解釈可能で真に信頼できる物理モデルを開発するにはどうすればよいのか?
一般ガイドラインを導入した後、機械学習ベースの物理モデルを開発する上で最も重要な2つの課題について論じる。
また、現代の機械学習の成功の背後にある根本的な理由について、シンプルで直感的な説明を提供するとともに、機械学習と物理ベースのモデリングを統合するために必要な並行機械学習フレームワークの導入も提供する。
分子動力学と運動方程式のモーメント閉包は、議論される主な問題を説明する例として用いられる。
最終的には、この統合がどこに結びつくのか、そして機械学習が科学的モデリングにうまく統合された後、新たなフロンティアがどこにあるのか、という一般的な議論で終わります。
関連論文リスト
- ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhyは、マシン物理常識を評価するための新しいベンチマークである。
私たちは、さまざまなAIモデルを評価し、ContPhyで満足なパフォーマンスを達成するのに依然として苦労していることがわかった。
また、近年の大規模言語モデルとパーティクルベースの物理力学モデルを組み合わせるためのオラクルモデル(ContPRO)を導入する。
論文 参考訳(メタデータ) (2024-02-09T01:09:21Z) - Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
ロボット工学では、触覚相互作用における物体の変形を理解することが不可欠である。
本稿では,物理符号化グラフニューラルネットワーク(GNN)を用いた予測手法を提案する。
コードとデータセットを公開して、ロボットシミュレーションと把握の研究を進めました。
論文 参考訳(メタデータ) (2024-02-05T19:21:52Z) - Physics-Informed Machine Learning: A Survey on Problems, Methods and
Applications [31.157298426186653]
最近の研究は、物理的な事前および収集されたデータを組み込むことによって、機械学習モデルに潜在的な利点を提供することを示している。
本稿では、経験的データと利用可能な物理的事前知識を活用するモデルを構築することを目的とした、Physical-Informed Machine Learning(PIML)という学習パラダイムを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:34:30Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Physics-Guided Deep Learning for Dynamical Systems: A survey [5.733401663293044]
伝統的な物理学に基づくモデルは解釈可能であるが、厳密な仮定に依存している。
ディープラーニングは、複雑なパターンを効率的に認識し、非線形力学をエミュレートするための新しい代替手段を提供する。
物理学に基づくモデリングと最先端のDLモデルの両方を最大限に活用して、科学的な問題を解決することを目指している。
論文 参考訳(メタデータ) (2021-07-02T20:59:03Z) - Measuring and modeling the motor system with machine learning [117.44028458220427]
モーターシステムの理解における機械学習の有用性は、データの収集、測定、分析の方法に革命をもたらすことを約束している。
本稿では, ポーズ推定, 運動解析, 次元減少, 閉ループフィードバックから, ニューラル相関の理解, 機能停止まで, 機械学習の利用の増大について論じる。
論文 参考訳(メタデータ) (2021-03-22T12:42:16Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Living in the Physics and Machine Learning Interplay for Earth
Observation [7.669855697331746]
推論は変数の関係を理解し、物理的に解釈可能なモデルを導出することを意味する。
機械学習モデルだけでも優れた近似器であるが、物理学の最も基本的な法則を尊重しないことが多い。
これは、地球系の知識を発見できるアルゴリズムを開発し、適用するための、長期的なAIの集合的なアジェンダである。
論文 参考訳(メタデータ) (2020-10-18T16:58:20Z) - Physical reservoir computing -- An introductory perspective [0.0]
物理貯水池計算は、物理系の複雑な力学を情報処理装置として利用することができる。
本稿では,ソフトロボティクスの例を用いて,フレームワークの可能性を説明する。
論文 参考訳(メタデータ) (2020-05-03T05:39:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。