論文の概要: Physical reservoir computing -- An introductory perspective
- arxiv url: http://arxiv.org/abs/2005.00992v1
- Date: Sun, 3 May 2020 05:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-07 07:05:04.406069
- Title: Physical reservoir computing -- An introductory perspective
- Title(参考訳): 物理貯水池コンピューティング-序論
- Authors: Kohei Nakajima
- Abstract要約: 物理貯水池計算は、物理系の複雑な力学を情報処理装置として利用することができる。
本稿では,ソフトロボティクスの例を用いて,フレームワークの可能性を説明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the fundamental relationships between physics and its
information-processing capability has been an active research topic for many
years. Physical reservoir computing is a recently introduced framework that
allows one to exploit the complex dynamics of physical systems as
information-processing devices. This framework is particularly suited for edge
computing devices, in which information processing is incorporated at the edge
(e.g., into sensors) in a decentralized manner to reduce the adaptation delay
caused by data transmission overhead. This paper aims to illustrate the
potentials of the framework using examples from soft robotics and to provide a
concise overview focusing on the basic motivations for introducing it, which
stem from a number of fields, including machine learning, nonlinear dynamical
systems, biological science, materials science, and physics.
- Abstract(参考訳): 物理学と情報処理能力の基本的な関係を理解することは長年にわたって活発に研究されてきた。
最近導入された物理貯水池コンピューティングは、物理システムの複雑な力学を情報処理デバイスとして利用するためのフレームワークである。
このフレームワークはエッジコンピューティングデバイスに特に適しており、データ送信のオーバーヘッドによる適応遅延を低減するために、エッジ(例えばセンサー)に情報処理を分散的に組み込む。
本稿では,ソフトロボティクスの例を用いてフレームワークの可能性を説明するとともに,機械学習,非線形力学系,生物科学,材料科学,物理など,さまざまな分野から生まれた,それを導入する基本的なモチベーションに焦点をあてた簡潔な概要を提供する。
関連論文リスト
- Informational Embodiment: Computational role of information structure in codes and robots [48.00447230721026]
我々は,センサの精度,モータの精度,配置,体形状,ロボットの情報構造や計算符号の形状について,情報理論(IT)を考察する。
本研究は,本質的な騒音や物質的制約にもかかわらず,情報の伝達・伝達を行う物理的通信路としてロボットの身体を想定する。
我々は、誤り訂正やノイズに対する堅牢性、パシモニーといった情報容量の観点から、シャノン限界に達したITで使用される効率的なコードの特別なクラスを紹介します。
論文 参考訳(メタデータ) (2024-08-23T09:59:45Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
ロボット工学では、触覚相互作用における物体の変形を理解することが不可欠である。
本稿では,物理符号化グラフニューラルネットワーク(GNN)を用いた予測手法を提案する。
コードとデータセットを公開して、ロボットシミュレーションと把握の研究を進めました。
論文 参考訳(メタデータ) (2024-02-05T19:21:52Z) - Physics-Informed Machine Learning: A Survey on Problems, Methods and
Applications [31.157298426186653]
最近の研究は、物理的な事前および収集されたデータを組み込むことによって、機械学習モデルに潜在的な利点を提供することを示している。
本稿では、経験的データと利用可能な物理的事前知識を活用するモデルを構築することを目的とした、Physical-Informed Machine Learning(PIML)という学習パラダイムを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:34:30Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - Physics-informed ConvNet: Learning Physical Field from a Shallow Neural
Network [0.180476943513092]
マルチ物理システムのモデル化と予測は、避けられないデータ不足とノイズのために依然として課題である。
物理インフォームド・コンボリューション・ネットワーク(PICN)と呼ばれる新しいフレームワークは、CNNの観点から推奨されている。
PICNは物理インフォームド機械学習において、代替のニューラルネットワークソルバとなる可能性がある。
論文 参考訳(メタデータ) (2022-01-26T14:35:58Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Neural Networks with Physics-Informed Architectures and Constraints for
Dynamical Systems Modeling [19.399031618628864]
軌道データから動的モデルを学ぶためのフレームワークを開発する。
出力の値とモデルの内部状態に制約を課す。
様々な力学系に対する提案手法の利点を実験的に実証した。
論文 参考訳(メタデータ) (2021-09-14T02:47:51Z) - An Extensible Benchmark Suite for Learning to Simulate Physical Systems [60.249111272844374]
我々は、統一されたベンチマークと評価プロトコルへの一歩を踏み出すために、一連のベンチマーク問題を導入する。
本稿では,4つの物理系と,広く使用されている古典的時間ベースおよび代表的なデータ駆動手法のコレクションを提案する。
論文 参考訳(メタデータ) (2021-08-09T17:39:09Z) - Integrating Machine Learning with Physics-Based Modeling [17.392391163553334]
この記事では、幅広い関心事の1つに焦点を当てる。 機械学習と物理に基づくモデリングをどのように統合できるのか?
機械学習に基づく物理モデルを開発する上で最も重要な2つの課題について論じる。
最終的には、この統合がどこに導くのか、そして機械学習が科学的モデリングにうまく統合された後、新たなフロンティアがどこにあるのか、という一般的な議論で終わります。
論文 参考訳(メタデータ) (2020-06-04T02:35:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。