論文の概要: Physics-Guided Deep Learning for Dynamical Systems: A survey
- arxiv url: http://arxiv.org/abs/2107.01272v1
- Date: Fri, 2 Jul 2021 20:59:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-06 14:56:10.367792
- Title: Physics-Guided Deep Learning for Dynamical Systems: A survey
- Title(参考訳): 力学系のための物理誘導深層学習:調査
- Authors: Rui Wang
- Abstract要約: 伝統的な物理学に基づくモデルは解釈可能であるが、厳密な仮定に依存している。
ディープラーニングは、複雑なパターンを効率的に認識し、非線形力学をエミュレートするための新しい代替手段を提供する。
物理学に基づくモデリングと最先端のDLモデルの両方を最大限に活用して、科学的な問題を解決することを目指している。
- 参考スコア(独自算出の注目度): 5.733401663293044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling complex physical dynamics is a fundamental task in science and
engineering. Traditional physics-based models are interpretable but rely on
rigid assumptions. And the direct numerical approximation is usually
computationally intensive, requiring significant computational resources and
expertise. While deep learning (DL) provides novel alternatives for efficiently
recognizing complex patterns and emulating nonlinear dynamics, it does not
necessarily obey the governing laws of physical systems, nor do they generalize
well across different systems. Thus, the study of physics-guided DL emerged and
has gained great progress. It aims to take the best from both physics-based
modeling and state-of-the-art DL models to better solve scientific problems. In
this paper, we provide a structured overview of existing methodologies of
integrating prior physical knowledge or physics-based modeling into DL and
discuss the emerging opportunities.
- Abstract(参考訳): 複雑な物理力学のモデリングは科学と工学の基本的な課題である。
従来の物理モデルは解釈可能であるが、厳密な仮定に依存している。
直接数値近似は通常計算集約であり、かなりの計算資源と専門知識を必要とする。
ディープラーニング(DL)は、複雑なパターンを効率的に認識し、非線形力学をエミュレートするための新しい代替手段を提供するが、必ずしも物理系の規則に従わないし、異なるシステムにまたがってうまく一般化しない。
このように、物理誘導型DLの研究が登場し、大きな進歩を遂げた。
物理学に基づくモデリングと最先端のDLモデルの両方から、科学的な問題を解決することを目指している。
本稿では,従来の物理知識や物理に基づくモデリングをDLに統合する手法について概説し,新たな可能性について論じる。
関連論文リスト
- Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Learning to Simulate Unseen Physical Systems with Graph Neural Networks [13.202870928432045]
グラフベース物理エンジン(Graph-based Physics Engine)は,物理先行パラメータと物質パラメータを組み込んだ機械学習手法である。
我々は、GPEがトレーニングセットにない異なる特性を持つ材料に一般化できることを実証した。
さらに、モデルに運動量保存の法則を導入することにより、学習の効率性と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2022-01-28T07:56:46Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Which priors matter? Benchmarking models for learning latent dynamics [70.88999063639146]
古典力学の先行概念を機械学習モデルに統合する手法が提案されている。
これらのモデルの現在の機能について、精査する。
連続的および時間的可逆的ダイナミクスの使用は、すべてのクラスのモデルに恩恵をもたらす。
論文 参考訳(メタデータ) (2021-11-09T23:48:21Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
我々は物理誘導型Deep Markov Model(PgDMM)という物理誘導型フレームワークを提案する。
提案手法は,動的システムの駆動物理を維持しながら,ディープラーニングの表現力を利用する。
論文 参考訳(メタデータ) (2021-10-16T16:35:12Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。