Fractional-quantum-Hall-effect (FQHE) in 1D Hubbard models
- URL: http://arxiv.org/abs/2006.02762v2
- Date: Mon, 5 Apr 2021 12:43:46 GMT
- Title: Fractional-quantum-Hall-effect (FQHE) in 1D Hubbard models
- Authors: Ioannis Kleftogiannis, Ilias Amanatidis
- Abstract summary: We show the emergence of 1D states with density-wave and clustering order, related to topology, at odd denominator fillings.
We demonstrate a simple mechanism to reproduce many of the effects appearing in the fractional-quantum-Hall-effect.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the quantum self-organization of interacting particles in
one-dimensional(1D) many-body systems, modeled via Hubbard chains with
short-range interactions between the particles. We show the emergence of 1D
states with density-wave and clustering order, related to topology, at odd
denominator fillings that appear also in the fractional-quantum-Hall-effect
(FQHE), which is a 2D electronic system with Coulomb interactions between the
electrons and a perpendicular magnetic field. For our analysis we use an
effective topological measure applied on the real space wavefunction of the
system, the Euler characteristic describing the clustering of the interacting
particles. The source of the observed effect is the spatial constraints imposed
by the interaction between the particles. In overall, we demonstrate a simple
mechanism to reproduce many of the effects appearing in the FQHE, without
requiring a Coulomb interaction between the particles or the application of an
external magnetic field.
Related papers
- Deterministic Quantum Field Trajectories and Macroscopic Effects [0.0]
The root to macroscopic quantum effects is revealed based on the quasiparticle model of collective excitations in an arbitrary degenerate electron gas.
It is remarked that any quantum many body system composed of large number of interacting particles acts as a dual arm device controlling the microscopic single particle effects with one hand and the macroscopic phenomena with the other.
arXiv Detail & Related papers (2023-11-16T06:23:09Z) - Cavity-mediated long-range interactions in levitated optomechanics [0.0]
We show for the first time programmable cavity-mediated interactions between nanoparticles in vacuum.
The interaction is mediated by photons scattered by spatially separated particles in a cavity.
Our work paves the way towards exploring many-body effects in nanoparticles with programmable cavity-mediated interactions, generating entanglement of motion, and using interacting particle arrays for optomechanical sensing.
arXiv Detail & Related papers (2023-08-28T17:24:23Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Observation of Universal Hall Response in Strongly Interacting Fermions [0.0]
We use an atomic quantum simulator to track the motion of ultracold fermions in two-leg ribbons threaded by artificial magnetic fields.
We unveil a universal interaction-independent behavior above an interaction threshold, in agreement with theoretical analyses.
arXiv Detail & Related papers (2022-05-26T18:15:06Z) - Two ultracold highly magnetic atoms in a one-dimensional harmonic trap [0.0]
We theoretically investigate the properties of two interacting ultracold highly magnetic atoms trapped in a one-dimensional harmonic potential.
We show the role of inability and symmetries in the dynamics by studying the time evolution of the observables.
The presented model may depict the on-site interaction of the extended Hubbard models, therefore giving a better understanding of the fundamental building block of the respective many-body quantum simulators.
arXiv Detail & Related papers (2022-05-18T14:44:37Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Heat transport and cooling performance in a nanomechanical system with
local and non local interactions [68.8204255655161]
We study heat transport through a one dimensional time-dependent nanomechanical system.
The system presents different stationary transport regimes depending on the driving frequency, temperature gradients and the degree of locality of the interactions.
arXiv Detail & Related papers (2022-02-21T12:03:54Z) - Unambiguous joint detection of spatially separated properties of a
single photon in the two arms of an interferometer [0.0]
The quantum superposition principle implies that a particle entering an interferometer evolves by simultaneously taking both arms.
For a fixed state measured at the output port, certain particle properties can be associated with only one or the other path.
We report observation of the spatial and polarization degrees of freedom of a single photon in the two arms of an interferometer.
arXiv Detail & Related papers (2022-01-27T10:23:16Z) - Feynman Propagator for a System of Interacting Scalar Particles in the
Fokker Theory [62.997667081978825]
The functional integral on the generalized phase space is defined as the initial one in quantum theory.
The measure of integration in the generalized configuration space of world particle lines is determined.
A modification of the propagator is proposed, in which the role of independent time parameters is taken by the time coordinates of the particles in Minkowski space.
arXiv Detail & Related papers (2020-02-10T09:09:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.